
NASA-CR-1976Z3

North Carolina State University

EXECUTIVE SUMMARY

f:_ (i /7

The overall goal of "Telerobotic Control of a Mobile Coordinated Robotic Servicer'_/-2 6 0 C3

project is to develop advance control methods that would enhance the usage of robotic systems /c_ _ F'

for space applications. Towards this end, several algorithms have been developed from this

project. One area of development was to extend the methodology of the Observer/Kalman Filter

Identification (OKID) approach, developed at NASA Langley, to such design problems as

frequency spectrum reconstruction, improved parameter estimation from frequency data and

recursion structures to improve computational performance. This area addressed the

identification issue of systems which can then be followed by regulation design as is typical in

self-tuning adaptive control. The approach has applicability to many types of systems, including

robotics, when the system structure or parameter set is unknown or has variations.

O_
o

O3
Lo

2

The second area of control research focused on fuzzy control which is a non-parametric

(non-model-based) knowledge-based approach. In this area, adaptive algorithms were developed

using self-tuning scaling factor schemes in the fuzzifier, self-learning schemes in the control

rulebase and optimization to extend the method to multi-input, multi-output systems. As a

knowledge-based approach, the MIMO adaptive fuzzy controller uses a computationally efficient

rulebase to determine control commands when the system model (the robot dynamics) is partially

unknown or varies with time.

The final phase of this effort was devoted to the design, fabrication _d testing of a robot

manipulator arm which is attached to a mobile robotic system, a rover, built at the Mars Mission

Research Center. The rover is currently under teleoperation mode and will have capabilities for

full autonomy. The manipulator arm along with the mobile robotic system will be used to test all

of the control algorithms that have been developed though this effort as well as other programs at

the Mars Mission Research Center.

What follows is the MS thesis of Mr. Mike Brown. Mike spent a summer at NASA

Langley working in the Spacecraft Dynamics Branch. His thesis develops the design and testing

of the manipulator arm on the teleoperated mobile robotic system.

ABSTRACT

BROWN, JR., ROBERT MICHAEL. A Microcontroller-Based Three Degree-of-
Freedom Manipulator Testbed. (Under the direction of Gordon K. F. Lee.)

A wheeled exploratory vehicle is under construction at the Mars Mission

Research Center at North Carolina State University. In order to serve as more

than an inspection tool, this vehicle requires the ability to interact with its

surroundings. A crane-type manipulator, as well as the necessary control

hardware and software, has been developed for use as a sample gathering tool

on this vehicle. The system is controlled by a network of four Motorola

M68HC11 microcontrollers. Control hardware and software were developed in a

modular fashion so that the system can be used to test future control algorithms

and hardware. Actuators include three stepper motors and one solenoid.

Sensors include three optical encoders and one cable tensiometer.

The vehicle supervisor computer provides the manipulator system with the

approximate coordinates of the target object. This system maps the workspace

surrounding the given location by lowering the claw, along a set of evenly spaced

vertical lines, until contact occurs. Based on this measured height information

and prior knowledge of the target object size, the system determines if the object

exists in the searched area. The system can find and retrieve a 1.25 in diameter

by 1.25 in tall cylinder placed within the 47.5 in2 search area in less than 12

minutes. This manipulator hardware may be used for future control algorithm

verification and serves as a prototype for other manipulator hardware.

A MICROCONTROLLER-BASED THREE DEGREE-OF-FREEDOM
MANIPULATOR TESTBED

by

ROBERT MICHAEL BROWN, JR.

A thesis submitted to the Graduate Faculty of
North Carolina State University

in partial fulfillment of the
requirements for the Degree of

Master of Science

MECHANICAL ENGINEERING

Raleigh

1995

APPROVED BY:

Chair of Advisory Committee

BIOGRAPHY

Robert M. Brown Jr. was bom in Rocky Mount, NC, on December

1, 1965, to Mike and Marie Brown. He graduated from the North Carolina School

of Science and Mathematics in June 1984. While attending NCSU and taking

part in the cooperative engineering program, he spent five semesters working for

NASA at Wallops Island, VA. He received a B. S. of Aerospace Engineering

from NCSU in May 1989. He was married to Kathy Tyndall (NCSU '89) in June

1989 after which he spent two years working for NASA at Wallops Island, VA. In

May of 1991, Mr. Brown left NASA to work at the National Undersea Research

Center at the University of North Carolina at Wilmington. In January 1993 he

enrolled in the graduate program at NCSU.

ACKNOWLEDGMENTS

I would like to recognize my family, professors, and friends. Without the

assistance and support of Kathy Tyndall Brown, Mike and Marie Brown, Dr.

Gordon Lee, Dr. Larry Silverberg, Chih-Kang Chao, Keita Ikeda, and the faculty

and staff of the Mars Mission Research Center this goal would have been

unattainable.

°°°

III

TABLE OF CONTENTS

Page

BIOGRAPHY ... ii

ACKNOWLEDGMENTS .. iii

LIST OF FIGURES .. vi

LIST OF SYMBOLS .. vii

Chapter One: INTRODUCTION ... 1

A. Background Information ... 1

B. Research Objectives and Problem Development 3

C. Thesis Organization .. 5

Chapter Two: SYSTEM HARDWARE DESCRIPTION .. 7

A. Crane Structure .. 7

B. Coordinate System and Workspace .. 8

C. Actuators .. 9

Stepper Motors and Drivers ... 9

Solenoid Actuated Claw ... 10

D. Sensors .. 11

Optical Encoders .. 11

Cable Tensiometer ... 12

E. Microcontrollers ... 13

Motorola 68HC11 E9 General Description .. 14

Master Controller .. 17

Motor Controller ... 18

iv

Chapter Three: CONTROL SOFTWARE DESCRIPTION 19

A. Supervisor / Master Controller Loop .. 20

B. Master Controller / Motor Controller Loop .. 20

C. Motor Controller/Motor Loop .. 22

D. Master Controller / Claw Loop .. 23

Chapter Four: APPLICATION OF CONTROL SOFTWARE TO CRANE
SYSTEM ... 25

A. Test Scenarios ... 25

B. Results and Evaluation ... 28

Chapter Five: CONCLUSIONS AND SUGGESTIONS FOR FUTURE WORK..35

Chapter Six: REFERENCES ... 37

APPENDICES ... 39

A. Master Controller Circuit Diagram ... 40

B. Motor Controller Circuit Diagram ... 44

C. Master Controller Program Listing .. 47

D. Motor Controller Program Listing-93-- _ _/

E. Using PCbug11 To Program The Motorola 68HC11E9 -1-10- I tl

V

FIGURE 1-1:

FIGURE 2-1:

FIGURE 2-2:

FIGURE 2-3:

FIGURE 2-4:

FIGURE 2-5:

FIGURE 2-6:

FIGURE 4-1:

FIGURE 4-2:

FIGURE 4-3:

FIGURE 4-4:

FIGURE 4-5:

FIGURE 4-6:

LIST OF FIGURES

NCSU MARS ROVER .. 4

MANIPULATOR SYSTEM .. 7

CRANE STRUCTURE .. 8

COORDINATE SYSTEM .. 9

END EFFECTOR WITH SAMPLE OBJECT 11

TENSIOMETER HARDWARE ... 13

CONTROLLER HARDWARE ... 14

SEARCH PATTERN ... 27

TYPICAL RELIEF MAP OF MINOR GRID 28

CASE 1 ACTUATOR OUTPUT .. 31

CASE 2 ACTUATOR OUTPUT .. 32

CASE 3 ACTUATOR OUTPUT .. 33

CASE 3 RELIEF MAP .. 34

vi

LIST OF SYMBOLS

pp two ASCII characters representing vehicle pitch (degrees)

qq two ASCII characters representing vehicle roll (degrees)

r .. radius coordinate of claw position (inches)

rr.r ... four ASCII characters representing the radius
coordinate of claw position (inches)

z ... height coordinate of claw position (inches)

zz.z .. four ASCII characters representing the height
coordinate of claw position (inches)

e .. angular coordinate of claw position (degrees)

eGG .. three ASCII characters representing the angular
coordinate of claw position (degrees)

()a ... actual value

()d ... desired value

()t ... target value

vii

Chapter One: INTRODUCTION

Robotic vehicles are ideal for the exploration of hostile environments.

These devices allow humans to investigate areas that would otherwise be

difficult or impossible to reach. In order to serve as more than inspection tools,

these robots must have the ability to interact with their surroundings. An

undersea vehicle on a scientific mission must often collect sediment and water

samples 1. A Space Station assembly vehicle must be able to position and

connect building materials. An emergency response robot could open doors and

move debris while searching for injured victims in a burning building. A robotic

vehicle in a hazardous material spill area could be used to locate and close a

critical valve.

A. Background Information

Three basic types of joints, revolute, prismatic, and suspended cable, are

typically used by manipulator systems. Revolute joints, like a human elbow,

rotate about an axis. Prismatic joints, like an extension ladder, extend or retract

along a linear path. Suspended cable systems, used in place of rigid structural

members on crane systems, also extend or retract. The key difference is that

the path followed by a payload suspended by a cable is a function of

gravitational effects and environmental disturbances.

A revolute joint system, such as the manipulator arm used on the NASA

space shuttle, is very maneuverable. The variable direction of approach, made

possible by the slender structural members and multiple revolute joints, allows

the retrieval of unsymmetrical payloads. In the weightless environment of space,

the joint actuators must position the end-effector and damp unwanted motion.

However, in a similar system operating vertically in a gravity field, the joint

actuators must also support the manipulator structure and payload. Lower

payload capacities, relative to a crane with identical actuators, result.

Prismatic joints

important than range

are often used in systems where precision is more

of motion. Extremely fine control of an end effector

trajectory is possible with rigid links and prismatic joints. This advantage is

gained at the expense of mechanical complexity and additional weight. Loss of

mobility also results since the distance that a joint can extend is limited by the

length of the telescoping member.

Suspended cable joints, found in crane systems, are capable of extreme

ranges of motion. Cable, unlike rigid members, can be stored in great lengths on

winch drums. Since the structure, not the actuators, of a crane carries bending

loads, relatively high payload-to-system-weight ratios can be achieved. The key

disadvantages of a crane system are the difficulties in controlling all six degrees-

of-freedom of the end effector and in damping undesired motion.

The National Institute of Standards and Technology (NIST) has developed

a six degree-of-freedom crane called ROBOCRANE 2. This system uses cables

as structural links, winches as actuators, and cable travel encoders as sensors.

A cable, a winch actuator, and an encoder are required for each controlled

2

degree-of-freedom to ensure a fully constrained system. This technology is

applicable to various types of crane platforms, such as tower, boom, and

overhead, as well as lower degree-of-freedom systems.

Depending on system requirements and research objectives, algorithms

used in crane control vary from classical to discrete3 to fuzzy logic" schemes.

The Motorola M68HC11 is a relatively inexpensive microcontroller allowing the

use of both classical 5'6 and fuzzy control techniques _.

B. Research Objectives and Problem Development

An autonomous wheeled exploratory vehicle is currently under

construction at the Mars Mission Research Center at North Carolina State

University 8'9'1°. This vehicle, pictured in Figure 1-1, will be tasked with the

exploration of unfamiliar terrain. In order to effectively carry out this mission, the

vehicle must avoid dangers, such as boulders and crevasses, gather information,

such as visual images and sensor data, and collect physical samples, such as

rock and soil. The latter mission requirement makes a manipulator subsystem

necessary.

The purpose of the research presented in this thesis is to develop a

manipulator that serves two purposes. The first goal is to provide the required

environmental sample gathering tool for a Mars vehicle prototype. The second

goal is to provide a platform for future robotic manipulator research activities. A

crane-type manipulator system configuration was selected to insure adequate

payload capacity. Motorola microcontrollers were selected so that the prototype

3

payload capacity. Motorola microcontrollers were selected so that the prototype

system will be capable of implementing both traditional and modern control

techniques. The structural hardware, electrical hardware, and control software

have been designed and constructed in a modular fashion. Future researchers

will be able to further optimize the system by modifying individual hardware and

software components.

Figure 1-1: NCSU Mars Rover

Based on the existing vehicle design, the following criteria must be met by

the vehicle and manipulator subsystem.

1) The vehicle must

• Provide 12 V and 48 V electrical power.

4

2)

• Provide an ASCII string, via a serial link, containing manipulator

platform pitch and roll as well as object location in cylindrical

coordinates. The string format will be =_pp,±qq,_e88,_rr.r,_.zz.z.

• Disable the wheel motor subsystem during manipulator operation.

• Confirm retrieval of desired object with vehicle sensor devices,

such as vision or ultrasound.

The manipulator system must

• Fit in a space that measures 18 in long by 8 in wide by 18 in tall.

• Weigh no more than 20 lb.

• Find and retrieve a typical environmental sample, approximated by

a 1.25 in diameter by 1.25 in tall cylinder, when provided with a

target location inside the workspace and within 4 in of actual object

location.

• Be capable of lifting a payload weighing up to 1 lb.

C. Thesis Organization

This thesis is divided into seven chapters.

Description,

Chapter 3,

Chapter 2, System Hardware

describes mechanical and electrical system components. In

Control Software Description, a discussion is presented on the

software embedded in each of the four controllers. Chapter 4, Application of

Control Software to Crane System, details the system tests and results. Finally,

Chapter 5, Conclusions and Suggestions for Future Work, states conclusions

5

and offers ideas for system improvements. Appendices contains commented

computer code for each type of controller and programming instructions.

6

Chapter Two: SYSTEM HARDWARE DESCRIPTION

The manipulator system is composed of the master controller, three motor

controllers, three motor drivers, three stepper motors, three optical encoders, a

solenoid actuated claw,

components are pictured

sections of this chapter.

a tensiometer, and the crane structure. These

in Figure 2-1 and are discussed in the following

Figure 2-1: Manipulator System

A. Crane Structure

Four major components, illustrated in Figure 2-2, make up the structure of

the manipulator. The tower is the vertical structure about which the boom pivots.

The lower flange of the boom acts as a track for the trolley. The claw is

suspended on a aramid fiber cable from the trolley. The tower, boom, and trolley

7

are constructed of readily available components to allow modification by future

users. The main structural components are formed from prefabricated fiberglass

I-beam, channel, and angle stock. The boom and cable drum are driven directly

by their respective motors. The trolley position is controlled via a chain drive with

the third motor.

Figure 2-2: Crane Structure

B. Coordinate System and Workspace

The three coordinates used to describe

manipulator claw tips are illustrated in Figure 2-3.

the position of the closed

The radius (r) and angle (e)

are standard polar coordinates when the system is viewed from above. The

radius is measured from the rotational axis to the trolley center. The angle is

measured counter-clockwise from home position. Note that the angle illustrated

in Figure 2-3 is in the negative direction. The height (z) is the distance from the

8

baseplane to the claw tips, where a positive value of z is used for points above

the plane.

>

J

Figure 2-3: Coordinate System

C. Actuators

Stepper Motors and Drivers

The three positioning actuators in this device are Pacific Scientific

Powermax P21NRXA-LDF-M1-00 stepper motors. Each is driven by a Pacific

Scientific Sigma Model 5210 motor driver.

and provides a holding torque of 114 oz-in.

requires two logic inputs.

Each motor requires 2.5 A at 12 V

In addition to power, the motor driver

The level of the direction input determines the direction

9

of rotation. A square wave applied to the second input results in a motor step for

every wave period.

The motor responsible for lifting the claw and captured object was

selected to maximize the payload capacity of the system. Identical motors were

selected to control boom and trolley location, to standardize hardware, and to

increase modularity.

Solenoid Actuated Claw

The claw, illustrated in Figure 2-4, is the same type used in arcade

games. A more forgiving control system and minor claw modification result in a

much better success rate. The claw has three fingers, located 120 ° apart, that

are activated by a 48V solenoid. Original tests, involving a range of object types,

demonstrated that, while the claw was very effective at "scooping" up a large

object, such as a four inch diameter sphere, it was not capable of holding most

smaller objects in its fingertips. To include small objects in the target range,

these fingers were modified by the addition of claw tips. These tips, acting as

fingernails, are 0.063 inch diameter rods protruding one-quarter inch from the

fingertips. They result in a great enhancement in gripping capability.

10

Figure 2-4: End Effector With Sample Object

D. Sensors

Optical Encoders

A U. S. Digital Model E2-512-250-1E optical encoder is mounted on the

shaft of each stepper motor. The resolution of each encoder is 512 counts per

revolution. An index pulse, once per revolution, allows the motor controllers to

find home position from the power-on position. Sensor output consists of two

11

square wave signals that, except for phase, are identical. The lead-lag

relationship of these two signals reflects the direction of motion of the encoder.

In general, these signals can be decoded by the motor controller. However, due

to high frequency "ringing" of the stepper motor after a single step command, a

separate chip was used. This chip, an LSI Computer Systems LS7166 24 bit

multimode counter, can accurately decode the encoder signals even with the

high frequency changes in direction of encoder rotation associated with ringing.

The internal 24 bit counter containing the motor position can be read by the

motor controller via an 8 bit data bus. The use of this chip relieves the

microcontroller of the burden of constantly monitoring the encoder output.

Cable Tensiometer

A slight loss of cable tension, such as occurs when the claw makes

contact with some surface or object, causes an interrupt service routine on the

master controller to be activated. A discussion of this software routine can be

found in Chapter 3. Figure 2-5 illustrates the mechanical components of the

sensor. The key electrical component that enables this interrupt is a conditioned

single-pole double-throw (SPDT) switch. This switch is mounted on a lever

whose position is controlled by the cable tension. The switch and conditioning

circuit 11, detailed in Appendix A, control the state of pin PA3 on the master

controller. This pin has input capture capabilities that are used to trigger the

interrupt service routine.

12

Figure 2-5: Tensiometer Hardware

E. Microcontrollers

Controller hardware consists of one master controller and three motor

controllers. These components are pictured in Figure 2-6 and are discussed in

the following sections.

13

Figure 2-6: Controller Hardware

Motorola 68HC11E9 General Description

The Motorola 68HC11E9 is a one of a family of devices called

microcontrollers or MCUs. An MCU combines discrete communication circuitry,

a processor, a data bus, and memory into a small, low power, single chip

computer. The 68HCll MCU has 40 input/output pins that allow serial and

parallel communication and analog-to-digital conversion. The 16 bit memory

address of the 68HC11 allows the use of 64K bytes of memory. Internal memory

in the 68HCllE9 consists of 512 bytes of random access memory (RAM), 512

bytes of electronically erasable programmable read only memory (EEPROM),

12K bytes of erasable programmable read only memory (EPROM), a 64 byte

register block, and a 64 byte bootstrap interrupt vector block. The remainder of

the 64K space can be accessed using an external memory chip. Detailed

14

hardware information can be found in M68HC11 Reference Manual 12, M68HC11

E Series Technical Data 13, and M68HC11 E Series Programming Reference

Guide TM.

While hardware defines the limits of a microcontroller's capability, the

software is the tool necessary to realize these limits. Program size, execution

speed, mathematical capability, and design are all important considerations

when measuring the effectiveness of any computer code.

Code for the 68HCll can be written using a number of high level

languages and assemblers. While languages such as Lisp and C provide data

structures and mathematical functions that allow the intuitive coding of complex

behavior, Motorola Assembly Language was used to generate all code used in

this project. The primary reason for this selection was to simplify code

troubleshooting. Debugging code in the PCbug11 or BUFFALO environment is

straightforward using the disassembler. When using this feature, code is viewed

as assembly code regardless of the original language. The usable result of

debugged and assembled code is an ASCII file in S-record format. This

machine language version of the original program can be read, edited, and

transported to the MCU.

In order to program and debug the MCU, a Universal Evaluation Board

(EVBU) is used . This board, with an MCU inserted, has many of the same

functions as the final version of the motor controller. It provides the MCU with

regulated power, a RS-232 serial interface, an oscillator, and access to all MCU

15

pin logic levels. Since the MCU is a self-contained computer, some software

must be present and running before any meaningful communication with any

other system can occur. Two software applications, provided by Motorola with

the EVBU, are BUFFALO and PCbug11. While allowing the user to perform

nearly the same tasks, these two applications work in very different ways.

BUFFALO is a complex piece of code that must be previously loaded into

MCU memory. When the EVBU is reset, BUFFALO begins execution. This

program allows the user to use a VT100 terminal emulation program and serial

link to connect to the MCU. Once the connection is established, code can be

loaded into RAM or EEPROM, executed, and debugged. The two most

significant limitations of BUFFALO are that it must already be loaded into MCU

memory and that it cannot modify EPROMo BUFFALO is well documented and

discussed in the User's Manual provided with the EVBUis.

PCbug11 is a DOS-based application capable of connecting to an

unprogrammed MCU. During initialization, a small program, called a talker, is

loaded in to MCU memory. This small but powerful piece of code, allows the

user to read and program any available MCU memory location in RAM,

EEPROM, or EPROM. Since only a small portion of memory is used temporarily

for the talker, a much larger block of code can be transferred to MCU memory.

The use of PCbugl 1 is documented in the PCbugl 1 User's ManualTM.

One important feature of the MCU is the receiver wake-up operation.

When multiple controllers are used, every controller receives any message sent

16

by a controller on the network. A system must be devised to allow a receiving

MCU to determine if it is being addressed. The address-mark wake-up feature,

available on the 68HCll MCU, solves this dilemma. Each MCU is placed in a

dormant state by enabling the RWU bit in the SCCR2 register. In order to select

any controller, a byte of information must be sent in which the most significant bit

is set. The remaining seven bits are used as a coded address. This byte of

information will wake up each controller. The software running on each MCU is

responsible for determining if the encoded address matches its own. If no match

exists, the software is responsible for placing the MCU back in the dormant

mode.

Master Controller

The master controller includes a 5 V voltage regulator, a M68HC11

microcontroller, a crystal oscillator circuit, and a reset circuit. In addition, the

master controller, detailed in Appendix A, also contains an extemal 32K RAM

chip, a claw solenoid activation circuit, the conditioning circuit for the tensiometer

switch, and serial communications hardware for five sedal ports. The external

RAM allows for increased program size and faster reprogramming time than

using internal EPROM. Using this external memory requires that the MCU be

used in expanded mode. As a result, ports B and C are no longer usable as

external I/O pins. The claw activation circuit consists of a transistor driven relay

switch. The conditioning circuit for the tensiometer is discussed in the

tensiometer section. The communication hardware consists of three RS-232

17

serial port drivers and one asynchronous communications interface adapter

(ACIA). Two of the RS-232 drivers each control two serial ports. These four

ports, connected to the TxD and RxD MCU pins, are used to communicate with

the motor controllers. The last driver is used, along with the ACIA, to allow serial

communication with the supervisor computer via the Port C data bus.

Motor Controller

Like the master controller, the motor controller, detailed in Appendix B,

contains a 5 V voltage regulator, a M68HC11 microcontroller, a crystal oscillator

circuit, and a reset circuit. In addition, it contains optical encoder decoding circuit

and one RS-232 serial driver. The decoding circuit is discussed in the section on

optical encoders. The single serial driver is used to allow communication with

the master controller via the RxD and Txd MCU pins.

18

Chapter Three: CONTROL SOFTWARE DESCRIPTION

Each of the four microcontrollers contains embedded control software.

These programs were coded in assembly language for the Motorola M68HC11

series microcontroller. Each program is written as a text file, assembled, and

downloaded to the microcontroller RAM, EPROM, or EEPROM using PCBUG11

or BUFFALO. A listing of the code used in the master controller can be found in

Appendix C. A listing of the code used in a typical motor controller can be found

in Appendix D. Appendix E contains Motorola application notes outlining the

steps necessary to write, assemble, store, and run a piece of sample code.

The master controller contains the code necessary to service the

supervisor computer, the claw actuator and sensor, and each of the three motor

controllers. The motor controller code, identical in each case except for

constants defining position limits, controller address, and motor speed, is

responsible for driving and sensing motor position and communicating with the

master controller.

Since the exploratory vehicle system is currently under construction, an

IBM-compatible 486DX-33 personal computer running PROCOMM terminal

emulation software is used in place of the supervisor computer. Any computer

with a 9600 baud serial connection and software to access that port can be

substituted for the supervisor computer.

19

Discussion of the two programs is divided into four sections. Each section

focuses on the algorithm used to control the interaction between two hardware

component systems.

The

functions.

string containing platform orientation and target coordinates.

master controller provides claw trajectory information that can

system monitoring. The supervisor must examine the sample

resubmit the command if the correct object was not retrieved.

All data transfer is accomplished via a 9600 baud serial connection.

A. Supervisor / Master Controller Loop

link between the supervisor and the master controller has two

First, the supervisor must provide the master controller with an ASCII

Second, the

be used for

object and

Data

strings are in ASCII format to allow easier debugging and system monitoring.

These strings are converted into hexadecimal values upon receipt by the me.ster.

Each time the master receives information from a motor controller or

sensor, a character string is sent to the supervisor. This string contains position

information for each motor as well as the current state of the claw actuator.

Motor positions are written as absolute angles, in degrees, in hexadecimal form.

B. Master Controller/Motor Controller Loop

The master controller, upon receiving the approximate target location,

calculates the desired motor positions. These positions are functions of the

desired position (e,r,z)d and platform orientation (p,q). The master algorithm

20

approximates the motor positions by assuming that the platform is level during

manipulator operation. This assumption decouples the effects of motor positions

on claw position. Each motor is assumed to control one degree-of-freedom and

have no effect on the other two degrees-of-freedom.

Since the claw is suspended on a cable, it will always move along a

vertical line. When pitch and roll are both zero, this vertical line is parallel with

the z axis. In this situation, the distance that the claw must be extended or

retracted is a function only of the desired z coordinate. Similarly, the trolley

motor only affects r and the boom motor only affects 0. When some platform

pitch or roll exists, there will be an error in claw position whose magnitude varies

with motor positions and platform orientation. Since the object of the maneuver

is not to reach some given position, but rather to find some object within the

search area, the claw position error only becomes a problem if it is sufficient to

position the search area away from the target object. The amount of error that is

acceptable in the system is a function of the search pattern area and grid

resolution.

Given that the platform orientation is neglected, the system is completely

decoupled. As a result, each motor controls a single degree-of-freedom. The

desired motor positions are calculated based on measured values of trolley and

claw travel in degrees per inch, measured motor angles when the claw is in the

home position, and the desired cylindrical coordinates. Values for these

constants can be found the software listings included in Section 0.

21

The master controller issues all commands to the motor controllers and

claw in a serial fashion. After sending each motor command, the master waits

for the motor controller to achieve and feedback its desired position. Two

routines, docmds and docmds2, are used to issue a string of commands. The

first, docmds, performs them in the order of boom motion, trolley motion, claw

motion, and claw activation. The second, docmds2, commands the motors in

the reverse order and but still activates the claw last. The first routine is used to

approach an object. Since this object could be in a depression, the claw is kept

at as high as possible until directly over the target site. The second routine, used

after the object is captured, lifts the claw completely before moving the boom or

trolley.

A portion of the main routine of the master controller software, called

whenever a valid target position input string is received, is listed below.

jsr findit
jsr putaway
jsr gohome

The first routine, findit, is responsible for searching for and grasping the object.

The search algorithm is addressed in Chapter 4. The second routine, putaway,

directs the claw to move to a receptacle and release the object. The last routine,

gohome, sends the claw back to its home position.

C. Motor Controller / Motor Loop

The motor controller receives a hexadecimal number, in ASCII characters,

representing the desired absolute angle of the motor. The actual motor position

22

is read from the decoder chip and converted into degrees. These two values are

compared and a desired rotation, in degrees, is calculated. This number is

converted into motor steps. The motor controller then drives the direction pin on

the motor driver high for forward motion or low for reverse motion. A square

wave is then applied to the driver input pin. The number of pulses in this wave

corresponds to the number of desired steps. The frequency of the wave

determines motor speed. The motor controller again reads the decoder chip and

the process is repeated as necessary. An error of 1° is allowed between desired

and final actual motor position.

resolution

degrees.

This allowance is necessary due to the encoder

and integer division necessary to convert the encoder value to

When the final position is attained, the motor controller echoes its

current absolute position to the master controller.

D. Master Controller / Claw Loop

The master controller, in addition to performing high level motor position

control and communication with the supervisor, is responsible for claw activation

and obstacle contact detection. The claw is commanded via a relay on the

master controller circuit board. Contact between the claw and some obstacle is

monitored via a boom mounted switch and conditioning circuitry mounted on the

master controller circuit board.

The master controller enables or disables the claw by varying the state of

one of the microcontroller output pins. The pin indirectly drives the claw solenoid

using a transistor and a relay.

23

A sudden and sustained loss of tension occurs as a result of contact

between the claw and some surface. The loss of cable tension causes the

activation of an interrupt service routine on the master controller to command the

motor controller to stop and slightly raise the claw. This motion allows the claw

to better grip the target object.

This feature is vital to the success of the searching algorithm. The claw is

closed to minimize the projected area on the work surface and to limit contact to

one point instead of three points. The claw is then lowered at predetermined

points until contact is made. The absolute heights of these points are stored

until all points are searched. After all nine heights are measured, they are

converted into quarters of an inch above the lowest of the nine points. The

predetermined object height is 1.25 in. Software selects the first of the nine

points that happens to be higher than 1 in. If no object tall enough is found then

the search pattern may be repeated at another location. In general, a complete

search includes the mapping of 47.5 in2. The search pattem and mapping

technique are discussed in more detail in Chapter 4.

24

Chapter Four: APPLICATION OF CONTROL SOFTWARE TO

CRANE SYSTEM

A. Test Scenarios

A series of three test cases was used to determine the ability of this

manipulator device to retrieve an object. In case one, the claw moves to a

specified location, grips the object if

releases the object, and retums home.

one exists, moves to the drop zone,

In case two, the boom and trolley are

moved to the positions specified. At this point, the claw is lowered until it makes

contact with the ground or an object. The claw then lifts slightly, grips the object,

and completes the maneuver. In case three, a relief map of the area

surrounding the point of initial contact is created. Based on information

contained in this map and prior knowledge of the target object, either the object

is located or a new area is searched. Ultimately, either the object is found and

the maneuver completed or the search is abandoned.

In case one, the claw moves toward the specified location (e,r,z)d by first

swinging the boom into position (ed) and then moving the trolley (rd). Once the

claw is suspended above the desired point, it is lowered to the appropriate height

In the trajectory used in this case, only one motor is in motion at any given(zd),

time. Controller hardware does not limit the system to this serial motion. This

method is used to avoid undesired contact between the claw ana the

environment. Due to the crane structure, any motion of boom or trolley requires

25

that no obstacles be present in the space through which the suspended claw

moves. Keeping the claw retracted until all other motion is complete decreases

the chances of an unwanted collision with obstacles in the workspace. Upon

reaching the desired location, the claw is activated. No method of target object

confirmation is currently in place as part of this system. The vehicle supervisor

computer is responsible for confirming that the correct object was retrieved using

some part of its sensor array. The object, having been retrieved, is move_ to a

previously defined point and dropped into a receptacle. The claw is then

returned to home position.

The key difference in case two is that the final height of the claw (z) is not

necessarily the height specified (Zd). When the exact height is unknown by the

supervisor, a value at the limit or beyond the reachable workspace is used.

Whenever the claw makes contact with some object before the specified height

is reached, the claw descent is halted by the master controller. Next, the claw

suspension cable is retracted a distance of between one-half inch and one inch.

This claw height above the ground was determined by trial-and-error to be ideal

for gripping the target object. The claw is then closed and the remainder of the

maneuver is identical to case one.

In case three, the specified boom and trolley positions (e,r)d define the

central vertical axis of a search space instead of the vertical line along which the

object lies. As in case two, the claw is lowered until it makes contact with the

workspace. In case three, however, this motion occurs at least at the nine points

26

illustrated in grid 1 of Figure 4-1. The height coordinate (z) at each point is

measured and is normalized by subtracting the lowest height found. The heights

are then converted to a number of quarter inches. A typical resulting relief map

is illustrated in Figure 4-2. Since the object dimensions are assumed known, the

maximum measured height can be compared with a minimum anticipated object

height. If the object is determined to exist at one of the search points, then the

maneuver is completed as in the first two cases. If the object is not found at any

of the search points, then a new section of the workspace is searched. This

mapping process is repeated in the pattern shown in Figure 4-1 until either all the

specified areas are searched or the object is found.

Figure 4-1: Search Pattern

27

Figure 4-2: Typical Relief Map of Minor Grid

B. Results and Evaluation

In case one, the object was retrieved if the boom position was within

approximately 3 °, the trolley position was within 0.5 in, and the claw height was

within 0.5 in of the object center. The primary limitation of this scheme is that the

specified position provided by the vehicle supervisor must be fairly accurate.

Precise object location may prove difficult for the vehicle sensors to mea-_ure due

to the small size of the object, the natural terrain background, and the difficulty in

sensing within 8 in of the vehicle. Actuator output is plotted in Figure 4-3. The

target position used in this case is +00,+00,-180,+07.0,-10.0.

In case two, the burden of sensing object height is shouldered by the

manipulator device. The vehicle sensors must still synthesize a fairly accurate

two dimensional image of the object as viewed from above. While an

28

improvement over case one, the vehicle sensors still limit mission success. The

target object will typically be sighted before it is within reach of the manipulator.

The vehicle must then move into position and stop before retrieval can occur. As

in case one, this close proximity surface may be difficult to map. Actuator output

is plotted in Figure 4-4. The target position used in this case is +00,+00,-

180,+07.0,-10.0. Note that the only difference in case one and case two is that

the claw height did not reach -10 in. Instead, a collision with an obstacle forced

the claw to stop and grip at approximately -2 in.

Case three actuator outputs are illustrated in Figure 4-5. The boom angle,

trolley radius, and claw height all demonstrate the multipoint sounding technique

used to map the area. As in the previous two cases, the input string was

+00,+00,-180,+07.0,-10.0. In this case, however, the object was actually located

at +00,+00,-150,+07.0,-02.0. The resulting relief map is illustrated in Figure 4-6.

In this case, the specified coordinates must only be accurate enough to ensure

that the object is within the search area. As long as the object is within two

horizontal inches in the radial direction and four horizontal inches in the

tangential direction of the specified position, the object can be found and

retrieved. The ability of the manipulator to map the area and find the object is a

big advantage. Mission success in retrieving the object is much more likely with

this scenario. The major limitation of this method is that the maximum resolution

of the search pattern is limited by the physical dimensions of the claw. Due to

the large diameter of the closed claw, undesired contact between claw and

29

object sometimes occurs. This unwanted contact can cause the object to move

to a previously mapped location and be missed in the search or the claw height

to be inaccurately measured. A future modification of the system would be to

modify the claw so that contact between the claw and objects not directly

beneath it would be reduced.

30

Boom Angle

_--- 7 8 9 10 11
o_ -50

¢_ -100

-150

-200

, _ m i _. I _.

12 15 1_ 17 18 19 2_ 2_

J
Event

Trolley Radius

15.0

,o.o!=_ 5.0

0o0 I I I I I I I I I I I t I I I I (I I (

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Event

5.0

0.0
=.,

N -5,0

-10.0

Claw H eight

=_ = = = = -,-__ _
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Event

Claw Solenoid Status

1]°.8I
0.6

"-" 0.4

_ 0,2
0 _ _- _- _ , I i I i t I , _ _. _.. _. "-

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Event

Figure 4-3: Case I Actuator Output

31

0

-50
¢D

-I00

_-- -150

-200

Boom Angle

4 5 6 7 8 9 10 11 ' t "_4

/

/
Event

Trolley Radius

15.o

'°° I = = =
"_ _. _. _. _. _. _. _. -- _.

5.0

0.0 _) I (I I I I I I I I I I I _ I I I I

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Event

Claw Height

2.0

0.0 ' I -- ; 8 1'1 1'2 1'3 14 1 17 18 19 20 21

-2.0

Event

Claw Solenoid Status

T°'81 /, \0.6
0.4

0.2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Event

Figure 4-4: Case 2 Actuator Output

32

Boom Angle

0

-50
"_ -100

-150

____ -200

-250

Event

Trolley R adius

15.0

--_ 10.0
C

om

•- 5.0

Claw Height

Event

Claw Solenoid Status

1.4

o
. 0.9

0.4

Event

Figure 4-5: Case 3 Actuator Output

33

Figure 4-6: Case 3 Relief Map

In all three cases, an intermittent hardware or software error occasionally

gives grossly inaccurate count values in motor position. This problem has been

resolved in software by comparing the actual counter value and an estimated

value. When gross differences occur, the estimate is used by the motor

controller and the master controller is notified.

34

Chapter Five: CONCLUSIONS AND SUGGESTIONS FOR

FUTURE WORK

The manipulator system successfully meets the stated requirements of

size, weight, and functionality. A clay cylinder measuring 1.25 in by 1.25 in was

used as the target object during system testing. Given an initial boom angle

within 24 ° and an initial trolley position within 4 in of the actual values, the

system will locate and retrieve the target object approximately 80% of the time.

The search and recovery algorithm eliminates the need for precisely

measured target coordinates. This feature allows the rover to dedicate its

sensors to more important data gathering. It also eliminates the need for

sensors dedicated to surveying the area within 8 in of the vehicle base. The

vehicle can locate an object at a distance limited only by its sensor arrays, move

into position near the object, and provide the manipulator with estimated

coordinates relative to the vehicle.

The manipulator does occasionally miss the target in its search and

recovery effort. In these cases, the claw typically causes the object to move into

an already measured point when sounding the area immediately surrounding the

object. As a result, the object does not show up in the search map. In these

situations, the vehicle sensor system will sense the absence of the target object

and will resubmit the command. This tactic of multiple attempts is usually

successful.

35

The system is constructed in a modular form that will allow future users to

optimize the interaction between the vehicle system and the manipulator

subsystem. Sensors and actuators can be modified to provide new performance

characteristics. Control software can be altered for testing of new control and

search algorithms.

Modification of the end effector could improve system effectiveness in

three ways. A smaller claw would both allow a higher resolution mapping

algorithm and reduce unwanted claw/object interaction. This change wil; allow a

finer resolution and smaller object search capabilities. Redesigning the fingers

of the claw could increase the acceptable variation of object size, shape, and

consistency.

The master controller software listed in the Appendices neglects the

effects of platform orientation on actual position. Since the claw is suspended by

a cable, a change in position of the motor controlling claw height results in claw

motion along the z axis of the world coordinate system. Any pitch or roll of the

vehicle will cause the z axis of the manipulator coordinate system to no longer be

parallel with the z axis of the world coordinate system. Inclusion of these effects

when calculating desired motor positions based on a specified target coordinates

would result in increased accuracy in claw placement.

36

Chapter Six: REFERENCES

1 R. M. Brown, Jr., G. K. F. Lee, and A. W. Hulbert. Environmental Sampling

Tools Designed For Use On A Low Cost Remotely Operated Vehicle (LCROV).
Proceedings of Divinq For Science 1992, 23-30, 1992.

2 j. Albus, R. Bostelman, and N. Dagalakis. The NIST ROBOCRANE. Journal
of Robotic Systems, 10(5):709-724, 1993.

3 R. M. DeSantis and S. Krau. Bang Bang Control of An Overhead Cartesian
Crane. Proceedinqs of the 1993 American Control Conference, 1:971-975,
1993.

4 H. Ihara. Fuzzy Logic For Control Systems. Automatic Control in Aerospace

1992, 251-255, 1992

5 j. L. Jones and Anita M. Flynn. Mobile Robots: Inspiration to Implementation,
A K Peters, Ltd., Wellesly, MA, 210-224, 1993.

6 C. I. Ume, J. Ward, and J. Amos.

For Speed Control Of DC Motor.
15(4):373-386, 1992.

Application of MC68HC11 Microcontroller
Journal of Microcomputer Applications,

7 Motorola Background Information. Fuzzy Logic And Embedded Control. Third
Workshop on Neural Networks: Academic/Industrial/NASA/Defense,
WNN92:611-621, 1993.

8 S. Lee et al. A Mars Surface Exploration Vehicle Testbed For Control
Algorithm Verification. Proceedings of ISRAM Conference, Maul, HI, 1994.

9 S. Lee et al. The Mars Mission Research Center Exploration Vehicle Testbed:

A Platform For System Integration Studies. Proceedinqs of the AIAA Space
Programs & Technologies Conference, Huntsville, AL, 1994.

10 S. Lee et al. A Distributed Architecture For A Mars Surface Exploration
Vehicle Testbed. Proceedings of the ISCA Conference on Computers and Their
Applications in Industry and Enqineerin.q, San Diego, CA, 1994.

11 D. Lancaster and H. M. Berlin. CMOS Cookbook: Second Edition, SAMS,
Carmel, Indiana, 256-259, 1993.

12 Motorola. M68HC11 Reference Manual, Motorola Literature Distribution

Center, Phoenix, Arizona, 1991.

13Motorola. M68HC11 E Series Technical Data, Motorola Literature Distribution

Center, Phoenix, Arizona, 1993.
37

14 Motorola. M68HC11 E Series Proqramminq Reference Guide, Motorola
Literature Distribution Center, Phoenix, Arizona, 1993.

15 Motorola, Inc. M68HC11EVBU Universal Evaluation Board User's Manual.
Motorola Literature Distribution Center, Phoenix, Arizona, 1992.

16 Motorola, Inc. MC68HC11 Pcbuq11 User's Manual. Motorola Literature
Distribution Center, Phoenix, Arizona, 1992.

38

APPENDICES

39

A. Master Controller Circuit Diagram

4O

>

°

41

z_

u_ _D

42

I'-

I_ o

io
o£

i--

°i

° I
i

43

B. Motor Controller Circuit Diagram

44

>

J

>

45

46

C. Master Controller Program Listing

47

* 11108194

* 11/10/94

* 12/01/94

* 12103194

* 12112194

#

* 01/03195

* 01109195

w

#

* MASTER SOFTWARE FOR MARS ROVER MANIPOT.,ATOR

* Based on:

* 08119194 ct0.asm acia in / 8ci out ;with sequence input ok

* CK.Chao

* Modifications:

* 11/01194 mastl.asm Read MAXZN Dytea of data & echo to motor CPU.

* 11107/94 mast2.a_m Run main loop until cmmna_l received from

supez-viso=. Echo ccmman4 once then return to "tin loop

_-st3.amn PA7 commands claw upon receipt of C1 co--and.

C(anl_ching besides 1) results in claw off coazaand. &n¥ other

string is sent out SCI

added lines in INITPA to dlsable IRQ on pins

PA0, PAl, PA2, PA3.

mast4.asm -- Modified input cc=_and structure to

address(one byte hex), theta(four ASCII characters

representing a two byte h_w).

maatS.asm -- Receive and echo output frame*or controllers.

Each motor controller sends the master address (_), four

ASCII characters representing a two blr_e hex number (the

motor position An dagree8), two ASCII characters

representing the controller mode (closed loop (CO} or open

loop (O1, 02, or 03)), and four ASCII characters representing

the c_--uu_d received by the motor (desired motor positon

in degrees.

mast6.asm -- Rearrange functions to allow for easier

inclusion of conversion routine. Output printed whenever

flag (ffbkl,ffbk2,ffbk3,ffbkc) set. Input cc=_and syntax

modified to "i_p,_, i_tt, Irr.r, ±zz°z". Cauzand syntax is

verified after receipt. An error massage is written to

AC_A if an invalid ten, and is received.

mastT.asm -- Configure PA3 (It4) as the interrupt pin (on

falling edge) indicating lo88 of tension in crane cable.

Interrupt Service Routine (SLAKISR) will be called.

Modified putaway routine to take claw all the way to the

top before moving to drop zone.

mast8.asm -- Add routines to search around nominal target for

high spot. After identification, lift at high spot.

Modify output format to eliminate mode information and

add 0 as prefix and h as suffix to angle information. This

will allow Mathcad plot. Add PRNTDAT call in ACIAISR to

print hc_oposition after valid input string to add

hose position to plot. Added routine findit to search

for object around input (theta, r). Moved "docands" fr_nmain

to new routine.

B96 equ 9600110000

R_DATA equ $4000

cR equ S0D

S PACE equ $ 2 0

LF equ $0A

ACIA equ $1800

PCHAR equ $03

QCE.AR equ $03

TCS_R equ $04
RC.RAR equ $05

ZCHAR e_ $ 0 5

MAXZN equ PCHAR+QCHAR+TCHAR+RCEJtR+ZCHAR+ $ 04

MAXSCZ equ $06

RDPZ equ $51

RZERO equ $38E

ZDPI equ $74

ZZERO equ $1'_78

48

* Juwp table

org #$OOee

org #$00e2

J_ SCI0_ISR

org #$00a5

imp scz1_Is_

org #$00e8

imp SCI2_ISR

org #$00d3

J_ SLAK_ISR

* EEPROM con*ants

ORG delr

FDB 2

0RG del *hera

FDB 8

*********e*

* the variables

org #RDATA

rdata rmb MAXIN

boxl rmb MAXIN

box2 rmb MAXIN

box3 rmb MAXIN

box4 rmb MAXIN

box5 rmb MAXIN

box6 rmb MAXIN

box7 rmb MAXIN

box8 rmb MAXIN

box9 rmb MAXIN

cntrl rmb MAXIN

cntr2 rmb MAXIN

cntr3 rmb MAXIN

cntr4 rmb MAXIN

cntr5 rmb MAXIN

cntr6 rmb MAXIN

cntr7 rmb MAXIN

cntr8 rmb MAXIN

cntr9 rmb MAXIN

hex2 rmb 1

sci0_in rmb MAXSCI

scil_in rmb MAXSC I

sci2_in rmb MAXSCI

datain rmb 1

flrbkc rmb 1

ffhkl rmb 1

ffbk2 rmb 1

ffbk3 rmb 1

fcmdc rmb 1

fcmdl rmb 1

fcmd2 zmb 1

fcmd3 rmb 1

fstop rmb 1

pitch rmb PCHAR

r o i i rmb QCHAR

*hera rmb TC3KAR

radius rmb RCHAR

he£ght rmb ZCIKAR

thl rmb 2

th2 rmb 2

th3 rmb 2

th3a rmb 4

*IRQ

*It3

*IC2

*ICl

*IC4/0C5

* Search pattern constants

* del_r (half inches)

* del_theta (degrees)

4g

th3 • rmb

tamp _mb

_p16 rmb
c lawcnd rmb

mtphgt rmb

hgtl rmb

hgt2 rmb

h_c3 rmb

h9_4 rmb

hgtS rmb

hg_6 rmb

h9_7 rmb

hgt 8

hgt9 zmb

target rmb

try" rmb

whole in

half in

rmb

•tack rmb

S_FTREG RMB

TMPI RMB

2

2

2

1

2

2

2

2

2

2
2

2

2

2

1

1

rmb 2

:rob 2

40

1

input shift register

org $4500

dal_r rmb 2

del_theta rmb 2

* eventually BT00

*e**t*****

* the code starts here.

*t**t***_*

org $2000

imp START

* THE FUNCTION LIBRARY

e

* hin2hex -- Separate• each character of a hex number and calls outhex.

bin2hex p•hb

psha

l•ra

lsra

isra

Isra

anda #_00001111

sr outhex

pula

anda #9600001111

J •r outhex

zh2he_ pulb

rt•

* get•cA -- if a character has has. received on sea port, this character

* retrieves and places in accumulator A.

get•el Idx #REGBAS

idab SCSR,X * if RDRF is 0 then wait

bitb #$20

beq get•el

Idaa SCDR, X

zg_sci rts

* 2_XBIN(a) - Convert the ASCII character in A

* to binary and shift into •hftreg.

5O

eeee_teeeeeeeeeee

HEXBIN PSHA

PSHB

PSHX

• JSR UPCASE

CMPA #'0'

BLT HEXNOT

CMPA #'9'

BLE HEXNMB

CMPA #'A'

BLT HEXNOT

CMPA #'F'

BGT B_NOT

ADDA #$9

ANDA #$OF

LDX #Sm_REG

LDAB #4

HEXSHFT ASL l,X

ROL 0,X

DECB

BGT HEXSHFT

ORAA l,X

STAA I,X

BRA HXXRTS

E3DOqOT nap

• INC TMPI

HEXRTS PULX

PULB

PULA

RTS

eeeeee*eee

convert to upper case

jump if a < $30

Jump if 0-9

Jump if $39> a <$41

Jump if a > $46

convert $A-$F

convert to binary

2 byte shift through

carry bit

shift 4 times

indicate not hex

. onacia -- initializes acia port

eeeeeeeeee

onacia: Idx #REGBAS

eli

idaa OPTION, X

era #_00100000

etaa 0PTION, X

idaa #$03

staa ACIA

Idaa #_00010110

era _I0000000

staa ACIA

zonacla rts

eeee*eeeee

e onsci -- initializes sci port

eeeeeeeeee

oneci: idx #REGBAS

idaa #B96

staa BAUD, X

idaa #9600001100

staa SCCR2,X

idaa #_00000000

staa SCCRI,X

zonmci rts

. enable IRQ (clear I in CCR)

* set IRQ to recognize falling edge

e master reset of ACIA

e ACXA is at $1800

. cr4,cr3,cr2 m i01 : 8bit Istop hit

e crl,cr0 - I0 : 5 64 (IRQ enabled)

e enable IRQ

• met baud rate

•m WAS 00001100 made 00101110

e enable transmit & receive

•m Rs 00000000 ms.de 00001000

e tot data is 8-bit mode

ee.eeeeeee

outhex cmpa #i0

l_e ge2A

adds #$30

Jsr putacia

hra zo_hecK

ga2A: adds #$37

Jsr putacia

51

e.eeeeeeee

• outhex -- converts hex to ASCII and transmits out ACIA port

z,ohex rts

*,a.t l+ *t tit

. outhexm -- converts hex to _CII and tran_ts out SCI port
tttt_tttt

outhexs c_pa #10

3:_G'e _e2As
adds #$30

J sr putsc£

bra zo_hexs

ge2AI : adds #$3'7

Jsr putsci

z. h_m rts

t putacia
*tt**t.tte

putacia Idab

bith

beq

ands

staa

zp_acla rts

ttttttt*_t

-- puts byte in accumulator A out acia port.

ACIA

#$O2

putac4a

#$ff

ACIA+I

putsci idx

Idab

bitb

beq

ands

staa

zp_sci rts

t putsci -- puts byte in accumulator A out sci port.
_tt*ttttt

#REGBAS

SCSR, X

#$S0

putscl * if TDRE is 0 loop back to putsci

#$ff . (not ready to be sent)

SCDR, X

. scib2h -- Sepuates each character of a he_ number and calls outhexs.
ttttettttt

ec_b2h psha
isra

isra

Isra

Isra

aLuda #%00001111

sr outhexs

pula

ands #9600001111

Sr outhex_

zscib2h rts

tt*tettt*t

* SLODOWN -- kills time when necessary

ttttt*tt*t

SLODOWN psha

pshb

Idad #$FFFF

SLO1 subd #$0001

bne SLOI

pulb

pula

_cs

ttttt_tttttt_ttttttttttt_tt*tttttettetttttttttt*_tt*ttttttttttt_tQttt

t

e THE FUNCTIONS SPECIFIC TO MASTER OPERATION
t

t*ttt_et_t

. ASC2HEX -- Converts an ASCII character (0-9) in accumulator B to a

52

ASC2HEX cmpb #'0'

blt za2h

cmpb #'9'

bgt za2h

subb #$30

za2h rts

hex number. This number is returned in accumulator B.

* checkin -- Read input str_ng and varify syntax

.ee***e_et

checkin idy #R_DATA

Idea 0,Y

jsr issign

cmpb #'i'

bne aynerrl

Idea I,Y

J.r isint

c_pb #'i'

bne synerrl

idea 2,Y

J.r isint

c_pb #'I'

bne synerrl

idea 3,Y

Jsr i.ccmsp

cmph #'i'

bne synerrl

idea 4,Y

jsr i..ign

cmpb #'I'

bne synerrl

Idea 5,Y

Jsr isint

cmpb #'I'

beq set2

synerrl

set2

imp synerr

idea

j sr

cmpb

bne

Idea

Jsr

c_pb

bne

Idea

Jsr

c._b

bne

Idea

Jsr

cmpb

bne

idea

Jsr

cmpb

bne

idea

jsr

cmpb

bne

Idea

Jsr

cmpb

beq

6,Y

isint

#'I

synerr2

7,Y

iscomsp

#'1'

synerr2

8,Y

issign

#'I'

synerr2

9,Y

isint

#'I'

synerr2

10,Y

isint

#'I

synerr2

II,Y

isint

#'i'

synerr2

12,Y

isco_asp

#'I'

set3

53

synerr2 _m_ synerr

set3 idaa 13,Y

Jsr issign

cmpb #'1'

bne synerr3

idea 14,Y

_sr isint

cD_qQ_b #'i'

bne synerr3

Idea 15,Y

Jsr isint

_npb #'i'

bne synerr3

Idea 16,Y

Jsr isdec

cmpb #'I'

bne synorr3

idae 17,Y

_sr isint

cu_qpb #'i'

bne mynerr3

bra set4

synerr3 _m_ rynerr

set4 idea 18,Y

is= iscomsp

c2_b #'1'

bne synerr

Idea 19,Y

Jsr issign

cmpb #'1'

bne synerr

Idea 20,Y

Jsr isint

_b #'1'

bne 8ynerr

idea 21,Y

Jsr isint

c:n_qQ_b #'1'

bne synerr

idea 22,Y

Jsr isdec

cmpb #'I'

bne synerr

Idaa 23,Y

Jet imint

cnmpb %'1'

bne mynerr

noerr idea #'I'

staa dataln

bra zcheck

synerr Jsr wrerrO

Idea #'0'

staa detain

stea clawc_d

bre zcheck

zcheck hop

rts

* doc_ds -- Move manipulator to c_mnanded position

docmds Idea fcmdl

cmpe #'0'

54

beq do.m1

ar outcmdl

waitl Idea ffbkl

_mpa #'I'

beq adocmds

bra waitl

adocmds _sr doout

doeml Idea f cmcl.2

(:mpa #'0'

beq do ,--,_

:_ar outcmd_
walt2 idea ffbk2

cmpa #'i'

beq bdocmds

bre wait2

bdocmds _ ar doout

do.m2 hop
Idea fcmd3

_a #'0'

beq do_

ar outcmd3

wait3 Idea ffbk3

c_pe #'I'

beq cdocmds

idaa fstop

c_a #'1'

bne walt3

idea #'0'

staa fstop

staa fcmdl

staa fcmd2

bra bdocmds

cdocmds Jsr doout

do.m3 J sr grip

J sr doout

bset TFLGI, X #%00001000

bset TMSKI, X #%00001000

ddo_nds idea #' 0 '

stae detain

zdocmcls rts

* Clear IC& flag

* Enable IC4 interrupt

* docmds2 -- Move manipulator to co_manded position in reverse order
*********t

docmdm2 idea fcmd3

cmpa #'0'

beq doem21

jsr outcmd3

walt21 Idea ffbk3

c_pa #'1'

beq adocmd2
bra wait21

adocmd2 Jsr doout

do.m21 Idea fcmd2

c_pa #'0'

beq domn22

Jsr outcmd2

wait22 Idea ffbk2

cmpa #'I'

beq bdocmd2

bra walt22

bdoc_nd2 Jsr doout

do.m22 Idea fcmdl

cmpa #'0'

beq doem23

Jsr outcmdl

wait23 idea ffbkl

cmpe #'I'

beq cdocmc12

55

hra wait23

cdocaad2 Jer doout

domn23 Jsr grip

J sr doout

ldaa #'0'

staa datain

zdocmd2 rts

• doout -- write output to screen is necessary.

•e••••••••

doout Idaa ffbkl

s_ba #$30

adda ffbk2

s_ba #$30

adda ffbk3

s_ba #$30

adda f fbkc

suba %$30

cmpa %$00
beq zdoout

idaa %'0'

staa ffbkl

staa ffbk2

staa ffbk3

staa ffbkc

J sr PRNTDAT

zdoout r1: s

•••••••••e

• findlt -- Search for object around given approximate position.

•••••e*e••

findit psha

pshb

pshx

pshy

ldy
ldx

svcntrl idaa

staa

iny

inx

blt

ldy

ldx

svcntr2 Idaa

Algorithm

assumes that the beginning (input) point is the beginning of

the search. This point lies at the center of an imaginary

tic-tac-toe beard. All nine points are sounded and their

heights (th3 values) are stored in hgtl-hgtg. If the canter

point is del z above the perimeter, then the claw makes a

grab at the center point. If any of the perimeter squares

are del z taller than the center,

t_t point becc_es the new center and the search pattern is

run again. If two perimeter points are both equal and

taller than the canter, then... This process repeats

until...

If (hgtS-dal_z • all other hgt values)

Lift at center

Else if (hgti

Case 2:

cntri (i=1:9) are the centers of imaginary tic-tac-toe

boards that will be used in the search for the object.

boxi (i=izg) are the individual squares of the particular

tic-tac-toe board currently being searched.

#rdata

#cntrl

0,Y

0,X

• Save rdata to cntrl for later use.

#rdata+#MAXIN

mvcntrl

#rdata

#cntr2

0,Y

• Save rdata to cntr2 for later use.

56

svcntr3

svcntr4

svcntr5

svcntr6

svcntr7

svcntr8

svcntr9

staa

iny

inx

cpy

blt

ldy

Idx

idaa

etaa

iny

Imx

cpy

blt

idy

Idx

Idaa

staa

iny

imx

cpy

blt

idy

Idx

idaa

itaa

iny

imx

cpy

blt

idx

idaa

staa

iny

imx

cpy

blt

lay

idx

ldaa

staa

iny

inx

cpy

blt

idy

Idx

Idaa

mtaa

iny

inx

cpy

blt

idy

idx

idaa

staa

inF

inx

cpy

blt

0,X

#rdata+#MAXIN

svcntr2

#rdata

#cntr3

0,Y

0,X

#rdata+#MAXZN

svcntr3

#rdata

#cntr4

O,Y

0,X

#rdata+#MAXIN

svcntr4

#rdata

#cntr5

O,Y

0,X

#rdata+#MAXIN

svcntr5

#rdata

#cntr6

0,Y

0,X

#rdata+#MAXIN

avontr6

#rdata

#cntr7

0,Y

0,X

%rdata+#MAXIN

Jvcntr7

#rdata

#cntr8

0,Y

0,X

#rdata+#MAXIN

svcntz8

#rdata

#cntr9

0,Y

0,X

#rdata+#MAXIN

svcntr9

* Save rdata to cntr3 for later usa.

* Save rdata to cntr4 for later use.

* Save rdata to cntr5 for later use.

* Save rdata to char6 for later use.

* Save rdata to cntr7 for later use.

* Save rdata to cntr8 for later use.

* Save rdata to cntr9 for later ule.

57

search

tryl

try2

try3

try4

try5

try6

nomore

strdata

svrdat i

svrdat2

svr_t3

avrdat 4

J mr

Idea

staa

idy
idaa

c_pa

bne

idx

bra

c_pa

bne

Idx

bra

c_pa

bne

Idx

bra

c_pa

bna

Idx

bra

c_pa

hne

Idx

bra

cmpa

bne

idx

bra

Idea

staa

iny

inx

cpy

blt

idy

idx

idea

staa

iny

inx

cpy

blt

Idy

Idx

idea

staa

iny

inx

cpy

blt

Idy

idx

idea

staa

iny

inx

cpy

blt

idy

Idx

Idea

pattbig

#111

try

#rdata

try

#.i 0

try2

#cntrl

strdata

#'2'

try3

#cntr2

mtrdata

#'3'

try4

#cntr3

strdata

#'4'

try5

#cntr4

etrdata

#'5'

try6

#cntr5

strdata

#'6'

no,ore

#cntr6

strdata

giveup

0,X

0,Y

#rdata+#MAXIN

strdata

#rdata

#boxl

0,Y

0,X

#rdat a+#MAXIN

mvrdat I

#rdata

#box2

0,Y

0,X

#rdata+#MAXZN

svrdet2

#rdata

#box3

0,Y

0,X

#rdata+#MAXIN

svrdat3

#rdata

#box4

0,Y

* Modify cntr values to show spread.

* Set cntr to search around first

* Save cntri to rdata to be searched.

* all 9 grids have been searched, then

* give up.

* six square case

* Save rdata to boxl for later use.

* Save rdata to box2 for later use.

* Save rdata to box3 for later use.

* Save rdata to box4 for later use.

58

If

svrdat5

svrdat 6

sv_dat7

s_dat 8

svrdat 9

Idrdat i

staa

iny

inx

cpy

blt

Idy

ldx

ldaa

Itaa

iny

inx

cPy

blt

Idy

ldx

Idaa

staa

iny

inx

spy

blt

idy

Idx

Idaa

staa

iny

inx

_Py

blt

idy

idx

idaa

mtaa

iny

inx

cpy

blt

idy

ldx

idaa

staa

iny

inx

apy

blt

idaa

staa

Jsr

idy

idx

Idaa

staa

iny

inx

cpy

blt

ldaa

staa

Jsr

0,X

#rdata+#MAXIN

svrdat4

#rdata

#box5

0,Y

0,X

#rdata+#MAXZN

mvrdat5

#rdata

#box6

0,Y

0,X

#rdata÷#MAXIN

svrdat6

#rdata

#box7

0,Y

0,X

#rdata+#MAXIN

svrdat7

#rdata

#box8

0,Y

0,X

#rdata+#MAXIN

svrdat8

#rdata

#box9

0,Y

0,X

#rdata÷#MAXIN

svrdat9

patter_

#*I t

clawcmd

docmds

#rdata

#boxl

0,X

0,Y

#rdata+#MAXIN

Idrdatl

#111

datain

makecmd

* Save rdata to box5 for later use.

* Save rdata to box6 for later use.

* Save rdata to box7 for later use.

* Save rdata to box8 for later use.

* Save rdata to box9 for later use.

* Modify box positions to spread pattern

* Close claw

* Save boxl to rdata for sounding.

* Sound boxl

59

Idrdat2

Idrdat3

idrdat 6

Idrdat5

JJE

idd

std

Jsr

idy

ldx

Idea

mtaa

iny

inx

cpy

blt

Idaa

mtaa

Jsr

Jsr

ida

mtd

Jsr

lax

idea

mtaa

iny

Inx

cpy

blt

idea

staa

Jar

Jar

lad

std

Jsr

idy

lax

Idea

mtaa

iny

£nx

cpy

blt

idea

staa

Jsr

Jsr

idd

std

Jsr

lax

idaa

mtaa

iny

inx

cpy

blt

Idaa

staa

Jmr

_sr

docmds

th3s

hgt 1

gotop

#rdata

#boxa

0,X

0,Y

#rdata+#MAXIN

Idrdat2

#i I ,

detain

makecmd

docmds

th3s

hgt2

gotop

#rdata

#box3

0,X

0,Y

#rdata+#MAXIN

Idrdat3

#ill

dataln

makecmd

docmds

th3s

hgt3

gotop

#rdata

#box6

0,X

0,Y

#rdata+#MAXIN

ldrdat6

#111

detain

makecmd

docmdm

th3s

hgt6

gotop

#rdata

#box5

0,X

0,Y

#rdata+#MAXIN

idrdat5

#ill

datain

makecmd

docmds

* Save box2 to rdata for mounding.

* Sound box/

* Save box3 to rdata for sounding.

* Sound box3

* Save box6 to rdata for sounding.

* Sound box6

* Save box5 to rdata for sounding.

* Sound box5

6O

idrdat4

ldrdat7

idrdat8

idrdat 9

Idd

std

Jar

lay
Idx

Idea

staa

iny

inx
cpy

blt

Idea

#tea

Jmr

Jar

Idd

std

Jar

Idy

idx

idea

staa

iny

inx

cpy

blt

ldu

Jtu

Jar

Jar

idd

std

Jar

idy

lax

Idea

mtaa

inF

inx

cpy

blt

ldaa

ataa

Jmr

Jar

Idd

aid

Jar

idy

lax

idaa

ataa

iny

inx

cpy

blt

idea

stae

mr

J sr

ldd

t h3 •

hgt5

gotop

#rdata

#box4

0,X

0,Y

#rdat a+#MAXIN

Idrdat 4

#if0

detain

makec=d

docmds

th3a

hgt4

gotop

#rdata

#box7

O,X

0,Y

#rdata+#MAXIN

Idrdat7

detain

makecmd

docmds

th3m

hgt7

gotop

#rdata

#box8

0,X

0,Y

#rdata+#MAXIN

idrdat8

#111

dataln

makacmd

docmds

th3•

hgt 8

gotop

#rdata

#box9

0,X

0,Y

#rdata+#MAXIN

idrdat9

#ill

detain

makecmd

docmde

th3m

* Save box4 to rdata for sounding.

* Sound box4

* Save box7 to rdata for mounding.

* Sound box7

* Save box8 to rdata for sounding.

* Sound box8

* Save box9 to rdeta for sounding.

* Sound box9

61

mtd hgt$

Jmr gotop

so_l

sort2

mo_3

soz_c4

mort5

mo_ 6

sort7

sorted

idd

cpd
ble

Idd

cpd

ble

Idd

_d
ble

Idd

cpa
ble

Idd

cpd

ble

idd

ble

idd

cpd
ble

Idd

cpd
ble

Idd

std

idd

subd

std

idd

subd

std

idd
subd

std

ldd

subd

std

Idd

subd

std

Idd

subd

std

Idd

subd

std

idd

subd

std

idd

subd

std

hop

Idd

idx

idiv

pshx

pule

pulb

lid

Idd

Idx

idiv

hgtl
hgt2

sortl

hgt2

hgt3

sort2

hgt3

hgt4

sort3

hgt4

hgt5

sort4

hgt5

hgt6

sort5

hgt6

hgt7

sort6

hgt7

hgt8

sort7

hgt8

hgt9
sorted

hgt9

imp16

hgtl

tmp16

hgtl

hgt2

tmp16

hgt2

hgt3

tmp16

hgt3

hgt4

imp16

hgt4

hgt5

tmpl6

hgt5

hgt6

tmp16

hgt6

hgt7

tm_16

hgt7

hgt8

imp16

hgt8

hgt9

imp16

hgt9

#ZDPI

#4

tmpl6

hgtl

tmpl6

* Search all values of hgt to find the lowest

* value. Subtract this value from each

* hgt.

* Integer divide each hgt by ZDPI/4 (1/4")

82

psbx

pula

pulb

atd hgtl

ldd hgt2

ldx tmpl6

idly

psbx

pula

pulb

mtd hgt2

ldd hgt3

ldx t.mpl6

idiv

psl_

pula

pulb

std hgt3

Idd hgt4

Idx tmpl6

idly

psbx

pula

pulb

std hgt4

idd hgt5

idx trap16

idly

psbx

pula

pulh

mtd hgt5

idd hgt6

idx trap16

idiv

pshx

pula

pulb

std hgt6

Idd hgt7

Idx trap16

idiv

psbx

pula

pulb

std hgt7

idd hgt8

idx trap16

idly

psbx

pula

pulb

8td hgt 8

idd hgt9

Idx tmpl6

idly

pshx

pula

pulb

std hgt9

* Decide whether to:

* (i) Lift at a box within grid.

* (2) Make another location the center of new search pattern.

* (3} Give up.

idaa #'I'

|taa target

63

talll

tall2

tall3

tall4

tall5

tall6

tall7

tall8

pickup

svrdat

ldd

cpd

bge

ldaa

staa

ida

cpd

bge
Idaa

staa

idd

cpd

bge

Idaa

staa

idd

cpd

bge
Idaa

staa

idd

cpd
bge

ldaa

staa

Idd

cpd
bge

idaa

staa

idd

cpd

bge

idaa

staa

idd

cpd

bge
Idaa

staa

idd

cpd

bgt

Idaa

inca

staa

j=p

nop

ldy
idaa

idab

mubb

subb

mul

addd

pshb

psha

pulx

Idaa

staa

iny

inx

cpy

blt

Jsr

Jsr

hgtl

hgt2
talll

#'2'

target

hgt2

hgt3

tall2

#'3'

target

hgt3

hgt4

tall3

#'4'

target

hgt&

hgt5
tall&

#'5'

target

hgt$

hgt6

tall5

#'6'

target

hgt6

hgt7

tall6

#'7'

target

hgt7

hgt8

tall7

#'8'

target

hgt8

hgt9

tall8

#'9'

target

hgt%

#3
pickup

try

try

search

#rdata

#MAXIN

target

#$30
#1

#boxl

0,X

0,Y

#rdata+#MAXIN

svrdat

wrbox

sho_ap

* Search all nlue! o£ hgt to find the

* greatest value of hgt. Set tal-get -

* the box number of the first occurence

* of the greatest value.

* Save target box to rdata for pickup.

* Convert target to hex, subtract I,

* multiply by MAXIN, Add boxl address,

* store in X.

* Print search points

* Print map

64

giveup

Idaa

mtaa

Jar

idaa

staa

8taa

Jsr

J sr

J sr

puly

pulx

pulb

pula

rts

#'0 w

clawcmd

docmds

#'I'

clawcmd

datain

makecmd

docmds

gotop

. Open claw to prepare for pickup

e Pick up object

eeeeeee*ee

• gohmno -- Return to home position

eeeeeeeeee

how_pt fcc ' +00, +00, +000, +07. O, +03. O'

gohomm Idy @R_DATA

idx #hmuept

idaa #'I'

staa fczndl

staa f cmcL_

8taa fcmd3

staa fcmdc

Idaa # '0 '

staa clawcmd

goh_no i idaa 0,X

staa 0,Y

• J sr putacia

inx

iny

cpy #R_DATA+#MAXIN

blt gohcw"el

e idaa #CR

e J sr putacia

sr checkin

J sr .m,.kecald

jsr docmds2

e _ sr doout

rts

e.eeeeeeee

e gotop -- Take claw from current position ell the way to the top.

teeeeeeeee

gotop psha

pshb

pshx

pshy

Idaa # ' 1 '

staa fcmdl

staa fcn_2

staa fcmd3

staa fcmdc

idaa #'I'

ec staa claw_nd

Idx #R_DATA+ #MAXIN- # ZCHAR

Idaa # ' '

staa 0,X

inx

idaa #'0'

mtaa 0, X

inx

• idaa # '9 '

Idaa #' 0 '

staa 0,X

* Take claw to top

* Note +09.0 is out of range

. and forces the claw all the way up.

• Ten_orarilymake position 00.0

65

iDx

idaa #'.'

staa O,X

inx

idaa #'O'

mtaa O,X

Jar checkin

J sr makec_d

jar docmds2

puly

pulx

pulb

pula

rim

t••..•••••

• grip -- _ctinte8 or deactivates claw

.•••..•••e

grip idx #REGBAS

Idaa clawcmd

c_pa #'I'

boq clawon

clawoff bclr PORTA, X #%10000000

bra zgrip

clawon hset PORTA, X #%10000000

zgrip Idaa # ' 1 '

staa ffbkc

rts

• If 'i' than turn claw on

• Otherwise turn claw off

• return

••••e•••••

* inacia -- raads MAXIN characters in ACIA. Stores at R_DATA.

e••••••••.

inacia J mr syntax

idaa #'0'

staa datain

ldaa #'1'

*c staa clawcmd * close claw when position reached

idy #R_DATA

Idab ACIA • raad ACIA status register

bitb #$01 • check LSB, if i, than new character

heq zinacia * if no new character, return

READZT idaa ACIA+I * else read character one

anda #$ff * this changes CCR, not needed here

staa O,Y * store charater one

Jar putacia • echo character

iny • incrlment character pointer

cpy #R_DATA+#MAXIN-#$OI • co_are pointer to max pointer

hls GETNEXT * if not all in, goto GETNEXT

idy #RDATA • else reset character pointer

bra zinacia * always return

GETNEXT Idab ACIA * read ACZA status register

bitb #$01 • check LSB, if I, then new character

baq GETNEXT • repeat until new character in

hra READIT • raad and save character

zinacia nap

Idaa #CR

J sr putacia

r_s • ratur_

..••**•••.

• init -- initial process for the program.

• first step of the main program.

•**•.••**•

init Idaa #SPACE **

j sr putacia * *

J sr put acia **

idx #REGBAS

Call this function in the

Without these three lines,

approximately 10 characters

of nonmense print prior to

the first outcmd. ?????77??

66

ldy #__DATA

J sr onacia
_sr onsci
Jar INITPA

Jsr INIVAR

zinit _cs

* INITPA -- initializes PORT A (68HCIIEg)

INITPA idx #REGBAS

Idaa _10000100

staa PACTL,X

idaa #401110000

otaa PORTA,X

Idaa #_00001111

ltaa TFLGI,X

Idea #_00001111

staa TMSKI,X

bset TCTL2,X _410101010

rts

* INIVAR -- Initializes variables

INIVAR Idy #R_DATA

Idaa #SPACE

INIVARI staa 0,Y

iny

cpy #R_DATA+#MAXIN-#$01

bls INIVARI

* idy #R_DATA

idaa #°0'

staa fcmdl

staa fcmd2

staa fcmd3

staa fczndc

staa ffbkl

staa ffbk2

staa ffbk3

mtaa ffbkc

mtaa fstop

staa clawcmd

Idd #$0000

std thl

mtd th2

std th3

Idaa #'X'

idy #8¢i0_in

Shits0 staa 0,Y

iny

cpy #mci0_In+#MAXSCI-#$01

bls inlts0

idy #scil_in

initsl staa 0,Y

iny

cpy #scil_in+#MAXSCI-#$01

blm Shits1

Idy #sci2_in

Shits2 staa 0,Y

iny

cpy #sci2_in+#MAXSCI-#$01

blm initm2

idaa #0

staa hgtl

staa hgtl+l

sta& hgt2

staa hgt2+l

staa hgt3

t P0=000,PI:001,P2:010,P3:011

* p4:I00,PS:I01, P6:II0,PT:III

t reset interrupt flags IC4-ICl

Enable ICi interrupts

* Interupt ICi on falling edge

67

staa hgt3÷l

staa h_4

staa bgt4÷l

staa bgt5

staa hgtS÷l

staa h9_6

staa hgt6+l

staa hgt7

staa hgt7+l

staa hgt8

mtaa hgt 8 ÷ 1

mtaa hgt9

staa hgtg÷l

ZINIVAR rts

• iscu_uIp -- Writes 'I' to accumulator B if character in accumulator A is

* ',' or ' ' else writes '0'.

•••••*•*•*

iscomsp idab #'I'

cmpa #','

beq ziscum

c_pa #' '

beq zisccm

Ida]) #'O'

ziscum rts

• isdec -- Writes 'I' to accumulator B if character in accumulator A is

'.' else writes '0'.

indec 1dab

c_pa

ld_b

zisdec rts

#'I'

zisdec

#'0'

* isis* -- Writem 'I' to aQc_ulator B if character in accumulator A is

• 'I', '2', '3',

* writes '0'.

••*•••••••

isis* Idab #'I'

cmpa #'0'

beq zlsint

beq zisint

cmpa #'2'
beq zisint

cn_a #'3'

beq zisint

c_pa #'4'

beq zisint

c_upa #'5'

beq zisint

cmpa #'6'

zisint

c=_a #'7'

beq zisint

cmpa #'8'

beq zisint

cmpa #'9'

beq zisint

idab #'0'

zisint rts

• issign --

'4', '5', '6', '7', '8', '9', '0', else

Writes '1' to acaumul&tor B if character in accumulator A is

'+' or '-' else writes '0'.

88

****t*e*_*

issign idab #'I'

c_pa #'+'

beq zissign

cmpa #'-'

heq zissign

c_pa #' '

beq zissign

idab #'0'

zissign rts

e.etee*e*w

* makecmd -- Convert input string into motor co_mandm.

te**e***e*

makecmd idaa datain

czpa #'I'

beq begmake

J_ =_akc_

begmake nop

* if data in no good, quit

* parse received string into

* individual strings

getp

idx #R_DATA

Idy #pitch

Idaa 0, X

staa 0,Y

i_x

iny

cpy #pit ch+#PCHAR

blt getp

* mtore string in pitch

getq

iD3c

idy #roll

idaa 0, X

staa O, Y

i_x

iny

cpy #rol 1 +#QCHAR

blt getq

* store string in roll

gatth

inx

idy #theta

idaa 0,X

ltaa 0,Y

inx

iny

cpy #theta+#TCHAR

hit getth

* store string in theta

getrad

iD_C

idy #radius

idaa 0,X

staa 0,Y

inx

iny

cpy #radius +#RC2LER

blt gatrad

* store string in radius

gethght

in3c

idy #height

Idaa 0,X

staa 0, Y

inx

iny

cpy #height +#ZCHAR

* store string in height

69

blt gethght

makethl

mkthla

maketh2

mkth2a

mkth2b

mkth2c

mkth2f

mkth2d

idab

Jsr

Idaa

std

Idab

sr

ldaa

mul

addd

std

idab

Jsr

idea

mul

eddd

std

1dab

=m_b

beq

ida

subd

std

idae

Itae

Idab

c_pb

blt

Idd

Idx

idly

plhx

pula

pulb

bra

Idd

std

Idab

_sr

Idea

mul

addd

std

Idab

Jsr

Idea

pshb

plha

puly

cpy

beq

idx

idd

addd

std

dex

bne

day

bra

hOp

Idab

c_pb

beq

ldd

subd

std

theta+#TC_A_-%$01

ASC2BZX

#$00

thl

thete+#TCHAR-#$02

ASC2HEX

%10

thl

thl

thete+#TCHAR-#$03

ASC2HEX

%100

thl

thl

there

%1_!

mkthle

#$oooo

thl

thl

#,1'

fcmdl

radius÷#RCHAR-#$ 01

#'5'

mkth2a

#RDPI

#$0002

mkth2b

%$0000

th2
radius+#RCSAR-#$03

ASC2HEX

#RDPl

th2

th2

redlum+#RCHAR-#$04

ASC2HEX

#$00

%$0000
mkth2d

%10

#RD_I

th2

th2

mkth2f

mkth2o

radius

%1_!

mkth2e

%$0000

th2

th2

* Convert= there Itr£ng to thl (hex)

* i'I place

* 10'l place

* i00'I place

* Abmolute value ok

* If *-" leave positive

* If "+' make negative

* Since motor sign opposite of

* coordinate syltm sign

* Conver_ radius string to th2 (hex)

* If tenths place >- 5 then

* use 112 in. else truncate.

* l's place

* Degrees per one inch

* i0'I place

* Degrees per one inch

* If "-" leave positive

* If "+' make negative

* Since motor sign opposite of

* coordinate lylte_ sign

7O

_t_e idd #RZZRO

addd th2

std th2

Idaa #'I'

staa fc_d2

maketh3 Idab height ÷#RCHAR- #$ 01

cmpb #'5'

blt mkth3a

idd #ZDPI

ldx #$0002

idly

pshx

pula

pulb

bra mkth3b

mkth3a Idd #$0000

mkth3b mtd th3

Idab height +#RCE_ER-#$ 03

J nr ASC2HEX

idaa #ZDPX

mul

addd th3

std th3

Idab height÷#RCHAR-#$04

J sr ASC2HEX

idaa #$00

pshb

pnha

puly

mkth3c cpy #$0000

beq mkth3d

ldx #10

mkth3f ldd #ZDPI

addd th3

std th3

dex

bne mkth3 f

day

bra mkth3c

mk_h3d sop

idab height

cm_b #'+'

beq mkth3e

cmpb # ' '

beq mkth3e

idd #$0000

subd th3

std th3

mkth3e idd #ZZERO

addd th3

std th3

idaa #'i'

staa fcmd3

* Add count/coordinate system offset

* Set command flag

* Convert height string to th3 (he_)

* If tenthm place >= 5 then

* use 1/2 in. else truncate.

* l's place

* Degrees per one inch

* 10's place

* Degrees per one inch

* If "-" make negative

* otherwise make positive

* Since motor sign is the same as

* otherwise make pomitive

* Since motor sign is the same as

* coordinate syst_ sign

* Add count/coordinate syste_ offset

* Set ccme_nd flag

_lakcmd hop

rts

* outcmdl -- Sends motor 1 cmmnand out sCi port.

.eew*e****

outc_adl idaa #241

Jar putsci

idaa thl

Jar scib2h

Idaa thl+#$01

jsr scib2h

idaa #'0'

71

start fczdl

_s

* outcn_2 -- Sands motor 2 ccmnand out sol port.

out c_d2 Idaa #242

sr putscl

ldaa th2

jsr sclb2h

1dan th2+#$O1

jar scib2h

idaa # ' 0 '

staa fcn_12

_cs

* outcmd3 -- Sands motor 3 co_mu_ out sci port.

outcmd3 Idaa #243

Jar putsci

idaa th3

Jar scib2h

idaa th3+#$01

jar scib2h

idaa #'0'

staa fcmd3

rts

* pat*big -- Define canters of overall search pattern.

* will be used to start

Thesa valuas

* searches if the first grid mearch is not successful.

* cntr2: r = r5 + 3*dal_r

* the*a2 = the*aS

* cntr3: r = r5 + 3*del r

* the*a3 = the*aS + 3*del_thata

* cntr4: r = r5

* the*a3 = the*aS + 3*dal_thata

* cntrS: r = r5 - 3*del_r

* the*a3 = the*aS + 3*del_theta

* cntr6: r = r5 - 3*del_r

* the*a3 = the*aS

* cntr7: r = r5 - 3*del_r

* the*a3 = the*a5 - 3*del_theta

* cntrS: r = r5

* *beta3 = the*aS - 3*del_thata

* cntr9: r = r5 ÷ 3*del_r

* the*a3 = the*aS - 3*del_thata

pat*big psha

pshb

pshx

pshy

* Dete_ine the number of whole & half inches in 3*del_r.

idd dal_r

addd del_r

addd del r

Idx #2

idly

std half_in

pshx

pula

pulb

std whole_in

* Modify r values of cntr3, cntr4, and cntrS.

72

Idea #$00

idab cntrl+#15

mubb #$30

mid tmpl6

Idab cntrl+#14

subb #$30

idea #10

mul

addd tm_16

mid tmpl6

addd whole_in

Idx #10

idly

addd #$30

stab cntrS+#15

stab cntr4+#15

stab cntr3+#15

pshx

pule

pulb

addd #$30

stab cntrS+#14

stab cntr4+#14

stab cntr3+#14

idd half_in

opd #1

bna nohafsl

idea cntrl+#17

c._a #'5'

beq hafsinl

idea #'5'

staa cntrS+#17

staa cntr4+#17

staa cntr3+#17

bra nohafsl

hafsinl idea #'0'

staa cntrS+#17

staa cntr4+#17

staa cntr3+#17

idea cntrl+#15

adds #I

cmpa #'9'

bgt carrysl

staa cntr5+#15

staa cntr4+#15

staa cntr3+#15

bra nohafsl

carrysl idea #'0'

mtaa cntrS+#15

staa cntr4÷#15

mtaa cntr3+#15

Idea cntrl÷#14

adds #I

etaa cntrS÷#14

staa cntr4+#14

staa cntr3+#14

nohafsl hop

* Read string. Convert to hmx.

* Add whole_in to hex version of rr string

* Convert new hem value to rr ASCII mtring

* if (half_in==1) then rr.r = rr.r+.5

* Modify r

ldd tm_16

subd whole_in

Idx #i0

idly

addd #$30

values of cntr7, cntrS, and cntr9

* Load hem version of rr string

* Subtract whole in fr_ hem version of rr

* Convert new hem value to rr ASCII string

73

stab

stab

stab

pshx

pule

pulb

addd

stab

stab

stab

idd

cpd

bne

idea

c=_a

beq

Idea

staa

staa

staa

bra

hafmin2 idea

mtaa

staa

mtaa

Idea

subs

cm_a

51t

Itaa

Itaa

staa

1)ra

carryi2 idea

Itaa

Itaa

Itaa

idea

suha

Itaa

staa

staa

nohafs2 hop

on#r7+#15

cntr8+#15

cntr9+#15

#$30

cntr7+#Id

ontrS÷#14

ontr9+#14

half_in

#1

nohafs2

cnCrl+#17

#'0'

hafsin2

#'0'

cntrT+#17

cntr8+#17

cntrg+#17

nohafs2

#'5'

cntrT+#17

cnt=8+#17

cntr9÷#17

ont=l+#15

#1

#'0'

carrys2

cntrT+#15

cntrS+#15

cntrg+#15

nohafs2

#,9,

cnt=7+#15

cntrB+#15

cntr9+#15

cntrl+#14

#I

cntr7÷#14

cntrS+#14

cntrg+#i4

* Modify

idea

Idab

subb

atd

Idab

subb

idea

mul

addd

std

idab

subb

Idea

mul

addd

std

subd

subd

subd

* if (half in-m1) then rr.r - rr.r+.5

there values of cntrS, cntr6, and c_tr7

#$00 * Read string. Convert to hLx.

cntrl+#11

#$30

tmp16
cntrl+#lO

#$30

#10

tmp16

imp16

onCE1+#9

#$30

#100

tmpl6

tmp16

del_theta

dal_thata

delthata

* Subtract 3*del there fr_ hex _rsion of

* #hera string. Selma as adding and including

* sig11 on there. Sign ignored sinoe always

* negative.

74

Idx #i00

idly

paha

pshb

pshx

pule

pulb

addd #$30

stab cntrS+#9

stab cntr6+#9

stab cntrT+#9

pulb

pule

Idx #i0

idly

pmha

pshb

pshx

pule

pulb

addd #$30

stab cntrS+#10

stab cntr6+#10

stab cntrT+#10

pulb

pula

addd #$30

stab cntrS+#ll

stab cntr6+#ll

stab cntrT+#11

* Convert hex value to there ASCII string

addd del_theta

addd del theta

eddd dal_theta

idx #I00

idly

psha

pshb

pshx

pule

pulb

addd #$30

stab cntr3+#9

stab cntr2+#9

stab cntrg+#9

pulb

pule

Idx #I0

idly

psha

pahb

psbx

pule

pulb

addd #$30

stab cntr3+#10

stab cnt=2+#10

stab cntrg+#10

pulb

pule

addd #$30

* Add 3*del_theta frc_hex version of

* there string. Same as subtracting and

* including sign on there. Sign ignored

* since always negative.

* Convert hex value to there ASCII string

75

* Modify thata values of cntr3, cntr2, and cntr9

Idd tm_16 * Load he:(version of rr string

stab cntr3+#ll

mtab cntr2+#11

mtab cntrg+#ll

Jsr w_cntr • Write out the calculated grid canters.

puly

pulx

pulb

pula

rim

•••Q•••••e

• pattern -- Modify box strings to spread pattern.

e

•••_••••••

pattern psha

pshb

pshx

pshy

Looking d_wn £r_ the

booms and towardm he. end, search pattern looks like

box1 box_ box3

box4 box5 box6

box7 box8 box%

Top row:

Bottom row:

Left Column:

Right Column:

r irS + dal_r

r - rS - del_r

• hera - •beta5 + del_theta

• hera - •beta5 - dal_theta

• Determine the number of whole & half inches that r must be modified

idd del_r

Idx #2

idly

std half_in

psbx

pula

pulb

mtd

• Modify

whole_in

r values of box1, bow_, and box3.

idaa #$00

Idab boxS+#15

subh #$30

std tmg16

Idab boxS+#14

mubb #$30

idaa #I0

mul

addd imp 16

std tmpl6

addd whole_in

Idx #I0

idly

addd #$30

stab boxl÷#15

stab box2÷#1S

stab box3÷#15

psbx

pula

pulb

addd #$30

stab boxl÷#14

stab bo_+#14

stab box3+#14

• Read string. Convert to hex.

• Add whole_In to hex version of rr atr£ng

* ConVert new hex value to rr ASCII string

ldd half in • if (half_ins-l) then rr.r : rr.r+.S

76

brig

Idaa

c_pa

beq

idaa

staa

staa

staa

hra

halfinl idaa

staa

staa

staa

idaa

adda

c_pa

_t
staa

staa

staa

hra

carryl l_aa

staa

staa

staa

idaa

adda

staa

sta&

staa

nohalfl hop

#I

nohalfl

boxS+#17

#'5'

halfinl

#'5'

boxl+#17

box2+#17

box3+#17

nohalfl

#'0'

boxl+#17

box2+#17

box3+#17

box5+#15

#I

#'9'

carryl

boxl+#15

hox2+#15

box3+#15

nohal f 1

#'0'

boxl+#15

box2+#I5

box3+#15

boxS+#14

#1

boxl+#14

box2+#14

box3+#14

* Modify

idd

r values of boxT, box8, and box9

tm_16 * Load hex version of rr string

subd whole_In

idx #10

idly

addd #$30

stab box7+#15

stab box8+#15

stab boxg+#15

pshx

pula

pulb

addd #$30

Itab boxT+#14

stab box8+#14

stab boxg+#14

ldd

opd
bne

idaa

c_pa

heq

idaa

staa

staa

staa

bra

half in2 idaa

staa

staa

staa

idaa

suba

* subtract whole_in fr_ hex version of rr

* Convert new hex value to rr ASCII string

half_in

#i
nohalf2

boxS+#17

#'0'

halfin2

#'0'

boxT+#17

box8+#17

boxg÷#17

nohalf2

#'5'

boxT+#17

boxS+#17

box9+#17

box5+#15

#i

* if (half_in==l) then rr.r = rr.r+.5

77

c_Dpa

blt

staa

sta&

staa

bra

carry2 ldaa

staa

staa

staa

Idaa

muba

staa

mtaa

staa

nohalf2 hop

#i0*

carry2

box7+#15

box8÷#15

boxg+#15

nohalf2

#'9'

boxT+#15

box8+#15

box9+#15

boxS+#14

#1

box7+#14

box0+#14

box9+#14

* Modify

idaa

1dab

subb

std

idab

subb

idaa

mul

addd

std

1dab

subb

Idaa

mul

addd

std

theta values of boxl, box4, and box7

#$00 * Read string.

box5+#11

#$30

tmp16

boxS+#10

#$30

#10

imp16

tmpl6

box5+#9

#$30

#100

tmpl6

tn_16

subd del_theta

ldx #100

Idly

psha

pshb

pshx

pula

pulb

addd #$3O

stab box1+#9

stab h_X4+#9

Stab boxT+#9

pulb

pula

lax #10

idiv

pmha

pshb

pmhx

pula

pulb

addd #$30

stab]:_oxl+#lO

stab box4+#10

Stab bQxT+#10

pulb

pula

addd #$30

stab boxl+#ll

stab box4+#11

Convert to hex.

* Subtract del theta frca hem version of

* theta string. Same as adding and including

* sign on theta. Sign ignored since alwaym

* negative.

* Convert hem value to theta ASCII string

78

stab box7+#ll

* Modify there values of box3, box6, and h<Dc9

Idd tmpl6 * Load hex version of rr string

addd delthete

Idx #i00

idly

psha

pshb

pshx

pule

pulb

ad_1 #$30

stab h<_3+#9

stab box6+#9

stab boxg+#9

pulb

pule

ldx #10

idly

psha

pshb

pshx

pule

pulb

addd #$30

stab]xL_3+#lO

stab box6+#10

stab boxg+#10

pulb

pule

addd #$30

stab box3+#11

stab box6+#11

stab boxg+#ll

Jsr wrbox

* Add del_theta frr--hexversion of

* theta string. Same as subtracting and

* including sign on there. Sign ignored

* since always negative

* Convert hex value to there ASCII string

* Print search box coordinates to screen

puly

pulx

pulb

pula

rts

* putaway -- Move claw to drop location and open.

*********_

droppt fcc '+00,+00,-000,+I0.5,-03.5'

putaway hop

*! new stuff to take claw to top before approaching drop point

* idx #R_DATA

*debl idea 0, X

* inx

* Cpx #R_DATA+#MAXIN

* blt debl

,

* Idea # ' i'

* staa fcm_l

* staa fcmd2

* stae fcm_3

* staa fcmdc

* Idea #'I'

* stea clewcmd

* idx #R DATA+#MAXIN- #ZCHAR

* Take claw to top

* Note +09.0 is out of range

79

* la•,a #' '

* mtaa O,X

* ldaa #'0'

e Itaa OrX

* ida• # ' 9 '

* •taa O, X

* iDx

* Ida• #' • '

* •taa 0,X

* inx

* ida• # ' 0 '

* •taa 0,X

* J •r cheokln

* J •r makecmd

* :Jsr docma•2

* ! end new •tuff

lay #RDATA

idx #droppt

Ida• #'1'

mtaa fcmdl

• taa fcmd2

• taa fcmd3

• taa fczadc

ida• # ' 0 '

• taa c law(mKl

ptaway2 Ida• 0, X

• taa 0, Y

inx

iny

cpy #R DATA+#MAXZN

blt ptaway2

J sr checkin

J sr makeczd

J •r docmd•

* J •r doout

rts

* and force• the claw all the way up.

* Go to drop point

.***e*****

* PRNTDAT -- OUTPUT RELEVANT DATA TO SCREEN

PRNTDAT psha

pshb

pahx

pmh¥

* idaa

* J •r

idx

idy

prthl ida•

Jsr

iny

cpy

bne

* Idaa

* J •r

Ida•

J sr

prthlz hop

*p cpy

bl•

#e0e

putacla

#REGBAS

#ici0_i=

0,Y

put•el&

#•ci0_In+#MAXSCZ-#2

prthlz

#'h'

putacia

#SPACE

putacia

#•ci01n+#MAXSCI-#$01

p_-thl

* added for plot

* added for plot

* mode Info r_oved for plot

Ida• #SPACE

jsr putac£a

Jsr putacia

8O

prth2

prth2z

*p

idaa # ° O '

J sr putao ia

l_y #soil_in

l_a O,X

Jar putacia

iny

cpy #s=iI_In+%MAXSCX-#2

hna prth2 z

Idaa #'h'

J sr putao ia

idaa #SPACE

J Jr puta=ia

hop

cpy #scil_in+#MAXSC_ - #$01

blm pz_h2

* added for plot

* added for plot

* added for plot

* _de info rmnoved for plot

p_h3

prth3z

*p

Idaa #SPACE

JSE putaGia

Jsr putacia

Idaa #'0'

Jsr putacla

idy #sc_2_in

l_aa 0.Y

Jsr putacia

iny

cpy #sci___n÷#MAXSCX-#2

bne prth3z

idaa #'h'

Jsr putacla

Idaa #SPACE

J.r putacia

hop

cpy #jci2_In+#NAXSCZ-#$01

bls prth3

* added for plot

* added for plot

* added for plot

* mode info removed for plot

idaa #SPACE

Jar putacia

_sr putacia

prclw idab PORTA.X

h_i itson

itsoff idae #'0'

Jmr putacla

. l_aa #'0'

* Jsr putacia

. Idaa #'P'

* _sr putacia

. Idaa #'e'

. Jsr putaci&

. idaa #'n'

. Jsr putacia

* idaa #SPACE

* Jsr putacia

. Jsr putacia

bra ZPRNTDT

itson Idaa #'I'

jsr pu_aoia

. Idaa #'C'

. Jsr putacia

. Idaa #'i'

. Jsr putacia

. Idaa #'o'

* _sr putac_a

* Idaa #'m'

* Jsr putacla

* idaa #'e'

* _sr putac_a

. idaa #'d'

81

* Jmr putacia

ZPRNTDT Idaa

_sr

puly

pulx

pulb

pula

rts

* sho_ap -- print depth map to screen (3x3 grid)

show_ap psha

pshb

pshx

pahy

ldaa

Jmr

idaa

Jsr

Idaa

Jsr

Idaa

Jsr

idaa

Jsr

idaa

Jsr

idaa

Jsr

Idaa

Jsr

idaa

Jsr

Idaa

Jsr

idaa

Jsr

idaa

Jsr

Idaa

Jsr

idaa

Jsr

Idaa

Jsr

Idaa

Jsr

Idaa

J.r

idaa

Jsr

Ida&

J sr

Idaa

Jsr

idaa

Jsr

idaa

Jsr

idaa

Jsr

idaa

jsr

idaa

Jsr

hgtl

bin2hex

hgtl+l

bin2hax

#SPACE

putacia

hgt2

bln2hex

hgt2+l

bin2hex

#SPACE

putacia

hgt3

bin2hex

hgt3+l

bin2hex

#Ca

putacia

hgt4

bin2hex

hgt4+l

bin2hex

#SPACE

putacia

hgt5

bin2hex

hgtS+l

bin2hex

#SPACE

putacia

hgt6

bin2hex

hg_6+l

bin2hex

#CR

putacia

hgt7

bin2hex

hgt7÷l

bin2hex

#SPACE

putacia

hgt8

bin2hLw

hgt8+l

bin2hex

#SPACE

putacia

hgt9

bin2hex

82

idaa hgtg÷l

Jar bin_hex

idaa #CR

Jar putacia

idaa target

Jsr putacia

Idaa #CR

Jar putacia

puly

pulx

pulb

pula

rts

* syntax--

a_tax hop

Idaa

Jar

Idaa

Jar

Idaa

Jar

Idaa

Jar

idaa

Jar

idaa

Jar

idaa

Jsr

idaa

Jar

Idaa

Jar

idaa

Jar

Idaa

Jar

idaa

jar

idaa

Jar

Idaa

Jar

idaa

Jsr

Idaa

Jar

idaa

Jsr

idaa

Jar

Idaa

Jar

Idaa

Jar

idaa

Jar

idaa

Jar

idaa

Jsr

Idaa

_sr

idaa

Jar

print input cou_and a_tax to screen

putacia

#,p,

putacia

#,p,

putacia

#ll°

putacia

#,fl,

putacia

#,q,

putacia

#,q,

putacia

#0wI

putacia

#,_,

putacia

#'t'

putacia

#'t'

putacia

#'t'

putacla

#qt 9

putacia

#,_,

putacia

#'r'

putacia

#'r'

putacia

#0.0

putacla

#Irm

putacia

#mwm

putacia

#,fl,

putacia

#'z'

putacia

#'z'

putacia

putacia

#'z'

putacia

#CR

putacia

83

Etm

e**t****tt

* th3a2th3s() -

th3a2th3s hop

psha

Idaa

Jsr

idaa

jsr

Idaa

0taa

idaa

Jsr

Idaa

Jmr

ldaa

staa

pula

rts

Converts 4 ascii bytes in th3a to 2 hex hof'cem in th3s.

th3a

HEXBIN

th3a+#l

HEXBIN

SHFTREG+#1

th3m

th3a+#2

HEXBIN

th3a+#3

HEY.BIN

SHFTREG+#I

th3s+#1

* th32hgts() -

th32hgts hop

rts

Converts 2 hex bytes in th3 to 4 ascii

bytes in hgts (_hh.h).

* wrbox -- print cc_mnand lines for nine search points.

e**ee**e**

wrbox psha

pshb

pshx

pshy

wrboxl Idaa

Jsr

iny

cpy

blt

idaa

jsr

ldy
wrbox2 Idaa

Jsr

iny

cpy

blt

idaa

Jsr

Idy

wrbcx3 idaa

Jsr

iny

cpy

blt

idaa

J sr

Idy

wrbox4 Idaa

Jsr

iny

cpy

#box1

0,Y

putacia

#boxl+#MAXIN

wrboxl

#cR

putacia

#box2

0,Y

putacia

#box2 + #MAX IN

wrbox2

#ca

put ac ia

#box3

0,Y

putacia

#box3 +#MAXIN

wrbox3

#ca

putacia

#box4

O,Y

putacia

#box4 ÷#MAXIN

84

wrbox5

_box6

_box7

wrbox8

wrbox9

blt

Idea

Jsr

Idy
Idea

Jsr

iny

cpy

blt

idea

Jsr

Idy

Idea

Jsr

iny

cpy

blt

Idea

Jsr

idy

idea

_sr

iny

cpy

blt

idea

Jsr

idy

idea

Jsr

Iny

cpy

blt

Idea

jsr

idea

Jsr

iny

cpy

blt

Idea

Jsr

puly

pulx

pulb

pule

_s

wrbox4

#CR

putacia

#box5

0,Y

putacia

#boxS+#MAXIN

wrbox5

#CR

putacin

#box6

0,Y

putacia

#bOX6+#MAXIN

wrbox6

#CR

putac ia

#box7

O,Y

putacia

#box7 +#MAXIN

wrbox7

#CR

putacie

#box8

O,Y

puta_ia

#box8 +#MAXIN

wrbox8

#CR

putacia

#box9

0,Y

putacia

#box9 ÷#MAXIN

wrbox9

#cR
putacla

* wrcntr -- print command lines for nine search grid centers.

wrcntr pmha

pshb

pshx

pshy

idy #cntrl

wrcntrl idea 0,Y

Jsr puCacia

iny

cpy #cntrI+#MAXIN

85

wrcntr2

wrcntr3

wrcntr4

wrcntr5

wrcntr6

wrcntr7

_rrcntr8

w_cntr9

blt

Idaa

Jsr

Idy

ida&

Jnr

iny

cpy

blt

Idaa

Jar

Idy

Idaa

Jsr

iny

cpy

blt

idaa

jsr

idaa

Jar

iny

cpy

blt

Ida&

Jsr

idy

idaa

Jsr

iny

cpy

blt

Idaa

Jsr

idy

ldaa

Jsr

iny

cp¥

blt

idaa

Jsr

idy
idaa

Jsr

iny

coy

blt

idaa

Jsr

idy
Ida&

Jsr

iny

cpy

blt

idaa

Jsr

idy

idaa

wrcntrl

#cR
putacia

#cntr2

0,Y

putacia

#cntr2 +#MAXIN

wrcnt_2

#cR
putacia

#cntr3

0,Y

puta¢ia

#cntr3+#MAXZN

wrcntr3

#cR
putacia

#cntr4

0,Y

puta¢la

#cntr4+#MAXIN

wrcntr4

#cR
putacia

#cntr5

0,Y

putacia

#cntr5 +#MAXIN

wrcntr5

#Ca

putacia

#cntr6

0,Y

putacia

#cntr6+#MAXIN

wrcntr6

#CR

putacia

#cntr7

0,Y

putacia

#cntr7 +#MAXIN

wrcntr7

#c_
putacia

#cntr8

0,Y

putacia

#cntrS÷#MAXIN

wrcntr8

#CR

putacia

86

Jm_

iny

cpy

blt

idaa

jsr

puly

pulx

pulb

pula

rtJ

putacia

#cntrg+#MAXIN

wrcntr9

#CR

putacia

* W'roErO -- "syntax eEroE"

wrerr0 nop

Idaa #'W'

sr putac £a

idaa # 'R '

J sr putacia

Idaa #'E'

J sr putac ia

idaa #'R'

J sr putacia

idaa # 'R'

J sr putacia

Idaa # ' 0 '

sr putacia

ida& #' :

J sr putacia

Idaa #SPACE

J sr putac la

Idaa #SPACE

J .r putacia

idaa % 'S '

.r putacia

idaa # 'y'

J .r putacia

idaa #'n'

J sr putacia

idaa # 't '

j sr putacia

Idaa # 'a i

j sr putacia

idaa # 'x '

J sr putacia

idaa #SPACE

J sr putacia

idaa # '• '

J sr putacia

idaa # 'r '

J sr putacia

idaa # 'r '

J sr putacia

idaa # 'o '

J sr putac ia

Idaa # 'r '

sr putacia

Idaa #CR

J sr putacia

rts

t

* THE INTERRUPT SERVICE ROUTINES

87

*EII ISR -- Interrupt service routine occure when _CLX input received.

ACIA_ISR nop

Jsr inacia

Jsr checkin

* Jsr makecmd

idea datain

cmpa #'1'

bne zacia

Jsr PRNTDAT

zacia rti

* print homo position before _u_euver.

* SCI0_ISR -- Interrupt service routine occurs when SCI0 input received.

...e******

SCI0_ISR hop

* idea #'A'

* Jsr putacia

idx #REGBAS

bclr PORTA,X _01110000

Jsr getsci

* Jsr putacia

Idy #$FFFr

getsci0 dey

beq ZSCIO

idab SCSR,X

hitb #$20

beq getsci0

Idea SCDR,X

* jsr putacla

c_a #$F0
bne ZSCI0

GETEM0 idy #sci0_in

sci0 Jsr getsci

c_pe #$F0

beq GETEM0

stae 0,Y

* Jsr putacia

iny

opy #sci0_in+#MAXSCI-#$01

bls sci0

* idea #SPACE

* Jsr putacie

* Idea #'0'

* Jsr putacia

* Idea #CR

* _sr putacia

Idea #'1'

staa ffbkl

* read trigger character & discard

* y = $FFFF

* Y =Y- 1

* if Y=0 then return

* if (character not received) then

* gore getsci0

* read received character

* if (char t= F0) then return

* read and store MAXSCI characters

* echo characters, apace, 0, CR

ZSCI0 idea #%00000001

staa TFLGI, X

idea PORTA, X

ore #%01110000

staa PORTA, X

rti

* Clear It3 bit (PA0)

* PA6,PAS,PA4

* P0:000,PI:001,P2:010,P3_011

* p4:I00,PS_I01, P6:II0,PT:III

e****

* SCIIISR -- Interrupt service routine occurs when SCII input received.

******e***

SCII_ISR nop

* idaa #'B'

* J sr putacia

Ida #REGBAS

h_ir PORTA, X #%01100000

J sr get sci
* read trigger character & discard

88

• _s: putacia

ldy #$FFFF

getscil dey

beq ZSCI1

ldab SCSR, X

bitb #$20

beq getscll

ldaa SCDR,X

• Jsr putacia

cmpa #$F0

bne ZSCZ1

GETEMI ldy #scil_in

scil _sr getscl

cmpe #$F0

beq GZTEN1

staa 0,Y

• Jsr putacia

iny

cpy #sciI_in+#MAXSCI-#$01

bls scll

• Idea #SPACE

• Jsr putacia

• ldaa #'i'

• Jet putacie

• idea #CR

• Jsr putecia

idea #'I'

staa ffbk2

ZSCII Idea _00000010

staa TFLGI,X

Idea PORTA, X

era #_01110000

staa PORTA, X

rtl

• Y = SFFFF

• Y = Y- 1

• if Y=0 then return

• if (character not received) then

• gore getscll

• read received character

• if (char 1- F0) then return

• read and store MAXSCI characters

• echo characters, space, 0, CR

• Clear IC2 bit (PAl)

• PA6,PAS,PA4

• P0:000,PI:001,P2:010,P3:011

• p4:I00,PS:I01, P6:II0,P7:III

.**•we•e••

• SCI2_ISR -- Interrupt service routine occurs when SCI2 input received.

••••••••••

SCI2 ISR nop

• Idea # 'C '

• J mr putacia

18x #REGBAS

bclr PORTA, X #_01010000

Jsr getsci

* Jer putacia

idy #$FFFF

getsci2 dey

be(;[ZSCI2

idab SCSR, X

bitb #$20

beq get sci2

Idea SCDR, X

• J sr putacia

cmpa #$F0

bne ZSCI2

GETEM2 idy #sci2_in

sci2 J mr getsci

cn_a #$F0

beq GETEM2

staa 0,Y

• J sr putacla

Iny

cpy #mci2_in+#MAXSCI- #$01

• read trigger character & discard

• y = SFFFF

* Y = Y - 1

• if Y=0 than retur_

• if (character not received) then

• gore getsci2

• read received character

• if (char 1- F0) then return

• read and mtore MAXSCI characters

• echo characters, space, 0, CR

8g

hla sci2

ldaa #SPACE

mr pntacia

ldaa # ' 2 '

sr putacia

ldaa #CR

Jsr put ac4a

ldaa # ' 1 '

staa ffbk3

ZSCI2 Idaa r400000100

staa TFLGI, X

idaa PORTA, X

ora #_01110000

staa PORTA, X

rti

* Clear ICl bit (PA2)

* PA6,PAS,PA4

* P0:000,PI:001,P2:010,P3=011

* P4:I00,PS:I01, P6:II0,P7:III

* SLAK_ISR -- Interrupt service routine occurs when PA3 goes low.

* This occurs whenever cable tension goes slack.

S _'_K_I SR 1_

brclr

aslak bclr

Idaa

Jar

idaa

Jar

idaa

Jar

Idaa

Jar

idaa

Jar

#REGBAS

PORTA,X #_00001000 aslak * Continue only if PA3 is low.

zslak

TMSKI,X #_00001000 * Disable It4 interrupt

#243 * write to SCI to stop motor 3

putsci

#'S'

putsci

#'T'

putsci

#'O'

putsci

#,p,

putsci

* walt for reply. Update sci2_in.

idx #REGBAS

bclr PORTA, X #_01010000

Jar getsci

Idy #$FFFF

getslk2 dey

beq ZSLK2

Idab SCSR, X

hitb #$20

beq getslk2

idaa SCDR,X

c_pa #$F0

bne ZSLK2

GETSLK3

slk2

Idy #sci2_in

Jsr getsci

cmpa #$F0

be_ GETSLK3

staa 0,Y

iny

cpy #sci2_in+#MAXSCI-#$01

bla slk2

* read trigger character & discard

* y = $FFFF

* y s y - 1

* if Y=0 then return

* if (character not received) then

* goto getslk2

* read received character

* if (char i= F0) then return

* read and store MAXSCI characters

* echo characters, _ace, 0, CR

ZSLK2 Idaa #_00000100

staa TFLGI,X

Idaa PORTA, X

ora #_01110000

staa PORTA, X

* above lines taken frc_ sci2 isr

* Clear ICl bit (PA2)

* PA6,PAS,PA4

* P0:000,PI:001,P2:010,P3:011

* P4:I00,PS:I01,P6:II0,P7:III

9O

Jsr doout

** Convert received position in sci2_in (ASCII) to desired th3 (ASCII)

* Strip th3a from sci2_in

Idea sci2_in

staa th3a

ldaa sci2in+#l

staa th3a+#1

idea sci2_in+#2

staa th3a÷#2

Idaa sci2_in+#3

staa th3a+#3

* Convert th3a to th3s

jar th3a2th3s

idd th3s

std tm_16

* Increase height by .5" to i" to restore tension.

negth3s

th3cont

stpl

angllt

anglge

casel

idd th3s

subd #ZZERO

std tm_16

Idd tmpl6

ble negth3s

idaa #' '

staa stphgt

bra th3cont

Idea #'-'

staa stphgt

Idd #$0000

subd tmpl6

std tmpl6

nop

idx #ZDPI

idd tmpl6

idiv

pshb

* Convert th3s to angle fro_ ZZERO

* If angle is negative, take absolute

* value and set flag (mtphgt) to '-'

* Divide angle by ZDPI, to determine

* ZZERO

ldd #0

addd #ZDPI

std tmp16

dex

bne stpl

pulb

ldaa #2

mul

cpd #ZDPI

bge anglge

nop

idea stphgt

cmpa #'-'

beq case3

bra case2

hop

Idea stphgt

cmpa #'-'

beq case4

bra casal

nop

Idd imp16

addd #ZDPI

std tmpl6

idd #ZDPI

ldx #2

* Calculate absolute value of angle

* that corresponds to number of whole

* inches

* Recall remainder (R)

* If 2*R<ZDPI then

If (angle below zero) then

goto case3

else

goto case2

Endif

else

If (angle _ zero) then

goto case4

else

gore casel

Rndif

Endif

tmpl6 s tmpl6 + 1.5*ZDPI

91

idly

pshx

pula

pulb

addd tmp16

std tmpl6

bra sip2

case2 nop

Idd tmpl6

addd #ZDPI

std tmpl6

bra stp2

case3 nop

Idd #ZDPI

idx #2

idiv

psbx

pula

pulb

subd tmpl6

std tmpl6

idd #0

subd tmpl6

std tmpl6

bra stp2

case4 hop

bra stp2

sip2 Idaa stphgt

cmpa #'-'

beq sip3

idd #ZZERO

addd tmpl6

std th3

bra sip4

sip3 Idd #ZZERO

subd tmpl6

std th3

sip4 8td tmpl6

zslak

Idd th3

addd #ZDPI

std th3

idaa #' I'

staa fstop

8taa fcmd3

hop

Idea #%00001000

staa TFLGI, X

rti

tmpl6 = tmpl6 + 1.0*ZDPI

tmpl6 = _16 - 0.5*ZDPI

tm_16 = tmpl6

* Convert angle fr_ Z coordinate system

* to absolute motor angle by adding angle

* to ZZERO if pomitive and subtracting

* angle from ZZERO if negative.

* Add an additional inch to height

* no that clay can be pinned instead

* of scooped.

* net stop flag

* net new command3 flag

* reset interrupt flag IC_

* THE MAIN PROGRAM

START

zmain

Ids #stack

_sr init

Jar goho_e

idaa datain

cmpa #'I'

beq mna

idaa ffbkl

c_a #'i'

beq m_a

idaa ffbk2

92

tuna

main1

main2

_a

Idaa

c_pa

bra

bra

idaa

cn_a

beq

Jsr

nop

jsr

Jsr

Jet

J ar

J_

imp

#tl|

mna

ffbk3

#'1'

tuna

z_ain

mainl

datain

#'1'
maln2

doout

zmaln

docmds

findit

putaway

goh_nl

zmain

z_ain

* unsolicited feedback received

93

D. Motor Controller Program Listing

94

••••,•••••

••••••••••

• MTR9.ASM -- Must be linked with MTRIINC.ASM

e_•••••••_

•••••••••e

• PORTA pins:

• 0: low bit in 2 bit CPU address

* Road from DIP switch I.

• i: hi bit in 2 bit CPU address

* Road from DIP switch i.

• 2: Q input frc_ 74LS74. Driven hi

* by index pulse. Driven io

* by reset CLR (lo-hi on PBT)

* 3: Stop (5210)

* 4: Direction (5210)

• 5: Write Input (LS7166)

• 6: Road Input (LS7166)

• 7: Control/Data Input (LS7166)

* PORTB pins:

• 7: lo-hi clears 74LS74 (CLRI)

* 7/18/94 -- RMB

• Added routine to seek index (home

* position) and reset counter.

* Roads PA2 and stops is not high.

* When high, toggles CLR on 74LS74

• (PB7).

* 10/18/94 -- RMB (mtr2.amn)

* Added SCI Interrupt Service Routine

* to accept incoming cc_enand only if

* fa or fl is first character.

t

* 10/19/94 -- RMB (mtr3.asm)

* Added s_all, medium, and largo step option

• 11/15/94 -- RMB (mtr4.asm)

* Ropaired home seek on power up. Routlno disturbed by s/m/l option.

* Ii/16/94 -- RMB (mtrS.amn)

* Modified input ccumand format to a one byte address

* and four bytes representing

* the ascii version of a hexadecimal number of stops.

* During the SCI ISR, the co=m_nd is chock to ensure it is valid.

* A flag is sot to show that a now cu_wAnd has been received.

* During the main loop, this command is interpreted and sent to

* the motor. Each tin_ a cc_and is executed, a ASCII string is output

* consisting of _ (master address, "f0"), six characters representing

* the heuK value of the count (512 counts / 360 degrees), and four

* characters representing the issued ocamand.

* Ii/28/94 -- RMB (mtr6.asm)

• Make input coznnand and output count in degrees. Appropriate

* conversions must take place in code (400 steps/360 degrees and

• 360 degrees/512 counts). Position output is limited to a two

• by_a hex number (represented by four ASCII characters). Maximum

• and minimum values of there are stored as lim_minand llmmax.

• Thota_d is forced to re_ain within this range.

* ii/29/94 -- RMB (mtrT.asm)

• Controller can operate closed loop (using oncodor feedback) or

* open loop (using eotimatod there). On power-up, mode is closed

* loop. Mode (o or o) is ochoed with thata and ccnmnand. Cause

• (I: nonohanging count, 2: nonzero at star*up, 3: unreasonable

* variation between actual and estimated count)

* 12/8/94 -- RMB (mtr8.amm)

• Pause after two address output to allowmaoter

95

hardware time to select port.

12119/94 -- RMB (mtrg.asm)

Modified sci_isr to allow stop command (address,S,***). Modified

STEPIT routine to check for new c_mand before every mtep. If new

conmmnd is received, routine resets. If new command is STOP,

theta_d is set to theta. Modified estimated thata (in STEPIT) to

allow for an interrupt during motion.

COMSIZE equ $0004

R_DATA equ $0100

CR equ S0D

LF eq_1 $0A

org R_DATA

rdata rmb 4

tdata rmb 1

b_e2 z_J0 1

bytel rmb 1

]_rt eO rmb 1

theta d rmb 2

dxf lag rmb 1

fstop rmb 1

theta rmb 2

delta th rmb 2

mode rmb 1

modof lag rmb 1

theta • rmb 2

theta_o rmb 2

cnterr rmb 2

tamp rmb 2

tmpl6 rmb 2

steps rmb 2

SHFTREG rmb 2

TMPI rmb 1

STACKAREA rmb 30

STACKTOP rmb 1

ORG $b700

wait cnt rmb 2

ADDRESS rmb 1

i im_min rmb 2

i ira_max rmb 2

MAXERR rmb 2

ORG $b600

_ Sd000
ORG $b604

imp SCIISR

ORGwaitcnt

FDB $08FF

ORG ADDRESS

FCB $F3

ORG limmin

FDB SFIF0

ORG limmax

FDB $0000

ORGMAXZRR

FDB $0010

ORG $fffe

FDB $b600

ORG $ffd6

FDB $b604

* M# mtrl: FFFF

* M# mtrl: F1

* M# mtrl: 0000

t M# mtrl: 00El

EPROMbeglns at SD000.

ORG $D000

mtr2: 08FF

mtr2= F2

mtr2:0000

mtr2= 0276

g6

mtr3: 08FF

mtr3:F3

mtr3:FIF0

mtr3:0000

_mp STARTUP

INIT idx #REGBAS

J sr INITA

J s r INITOP

J sr ONSCI

J mr GOHOME

J zr INITVAR

eli

rts

it*tit*tit

*INITVAR --

tat.titter

INZTVAR idea #0

ztaa :l_lat a

Initialize variables

staa rdata÷l

Idaa #'0'

stae dxflag

staa fstoo

staamodefleg

Idea #'c'

staa mode

Idd #0

std theta_e

ztd there.

rts

* rdata:rdata+l = 0

* modeflag = '0'

t mode m +C'

t _hete_e:thete e+l = 0

. there_.:there o+I _ 0

*t*t_ttttt

tINITA -- MAKE PINS 3 G 7 OF PORTA OUTPUTS

***titter*

INITA idea #_i0001000

staa PACTL, X

rts

* INITIALIZE THE OPTICAL ENCODER

* COUNTER CHIP (LS7166)

INITOP Jzr RSTCNTR

Jsr SETQR

Jmr SETICR

rts

t RESET COUNTER TO ZERO ON STARTUP

RSTCNTR psha

pshb

pshx

pshy

ldx #REGBAS

idea #_III11111

staa DDRC, X

idea #_00000100

staa PORTC, X

j zr WRREG

puly

pulx

pulb

pule

rts

t TOGGLE WRITE BIT TO WRITE BYTE ON

* PORTC TO LS7166.

WRREG pzha

pshb

psbx

pshy

idx #REGBAS

idea PORTA, X

g7

ora 4_11100000

staa PORT_,X

anda 4_11011111

staa PORTA, X

ora #_slll00000

:taa PORT_,X

puly

pulx

pulb

pula

rts

* SET QUADRATURE REGISTER FOR Xl

* OPERATION

SETQR psha

pshb

psbx

p_hy

idx #REGBAS

idaa _iIIIIIII

staa DDRC, X

Idaa #_iIiiii01

staa PORTC, X

J sr WRREG

puly

pulx

pulb

pula

rts

* SET INPUT CONTROL RESIGTER

* ENABLE INPUTS A & B

SETICR psha

pshb

pshx

psby

1_x #REGRAS

Idaa #_11111111

staa DDRC, X

ldaa #_01001000

st:aa PORTC, X

j mr WRREG

puly

pulx

pulb

pula

rim

* turn SCI on. 9600 baud.

ONSCI psha

pmh.b

psbx

pshy

ldx

Idaa

otaa

idaa

staa

idaa

staa

puly

pulx

pulb

pula

rts

#REGBAS

#BAUD_9600

BAUD, X

#er_00001000 * wakeup by add.re-,-, ,-ark (MSB,,1)

SCCRI, X

_W400101110

SCCR2,X * enable SCZ Cranmer a Eece£vm (wake-up mode)

98

* STEP MOTOR BACKWARD UNTIL OPTO INDEX

* GOES HZ r'_'W. FORWARD ONE STEP. RESET

* COUNTER. RESET 74LS74.

GOHOME pmha

pmb.b

pshx

pshy

ldx #REGBAS

* * toggle CLRI (PBT) on 74LS74 to met

* * Q (PA2) low

idaa PORTB, X

ands #%0 IiII111

staa PORTB, X

era #%10000000

staa PORTB, X

* * check for high on PA2

* * (implies that index has

* * pulsed) .

GOHOMEI Idaa PORTA, X

anda #%00000100

h4xe RESET_

* backward one step since not yet at index

* pause

JsrMFWDI * M# mtrl: MREVl mtr2: MREVl mtr3: MFWDI

before next step necemsary so that motor has time to respond

Jsr SLODOWN

hra GOHOMEI

RESETEM nop

* Clear 741s74 (set Q low) step FWD (REV) one step so that zero cound is

* first step with low Q.

JsrMREVI * M# mtrl: MFWDI mtr2: MFWDI mtr3: MREVl

Jmr SLODOWN

* reset 74LS74 (Q is Io)

Idaa PORTB,X

ands #'401111111

staa PORTB,X

era _i0000000

staa PORTB,X

jsr RSTCNTR * reset counter to 0 (LS7166)

Jsr RDCNTR * read counter

idd byte1 * if (-1 < bytel:byte0 < 1)

cpd #$0001 * gore CLOSED2

bgt 0PEN2 * else

cpd #$FFFF * gore OPEN2

blt OPEI_ * endif

bra CLOSED2

OPEN2 idaa #'o'

staa mode * mode = 'o'

idaa #'2'

staa modeflag * modeflag = '2'

bra RESETZ * gore RESETZ

CLOSED2 idaa #'c'

staa mode * mode = 'c'

idaa #'0'

staa modeflag * modaflag - '0'

bra RESETZ * gore RESETZ

RESETZ puly

pulx

pulb

pule

rts

* loop counts down from waitcnt

* to kill time between step

* corm.hands

9g

SLODOWN psha

pshb

Idad

SLOI subd

bne

pulb

pula

rCs

waltcnt

#$0001

SX,,,01

* Send

OUTSCI

OUTSCII

0UTSCIX

a char out of SCI.

psha

peh_

pshx

pshy

lax #REGBAS

idaa SCSR,X

blta #$80

beq OUTSCII

idaa tdata

staa SCDR, X

puly

pulx

pulb

pula

rts

* loop if not

* ready/ still

* xmitting.

* send char

* SET UP THE LS7166 TO READ THE

* COUNTER REGZSTERON

* THX LS7166.

RDC_NTR psha

pmhb

pshx

pshy

idx #REGBAS

idaa #%11111111

8taa DDRC,X

Idaa #%00000011

staa PORTC,X

Jsr WRREG

idaa #%00000000

staa DDRC,X

Jsr RDDATA

puly

pulx

pulb

pula

rtm

* READ THX THREE BYTE COUNTER

* REGISTER ON THZ LS7166

RDDATA psha

pshb

plhx

pshy

lax #REGBAS

Idaa PORTA, X

anda #%01111111

or& #%01100000

"'tu PORTA, X

anda #%00111111

staa PORTA, X

idab PORTC, X

100

stab b_rtao

ora #%01100000

staa PORTA, X

a_da #%00111111

staa PORTA,X

idab PORTC,X

stab _/t e 1

ora #%01100000

staa PORTA, X

anda #%00111111

staa PORTA, X

Idab PORTC,X

mtabbyta2

or& #%01100000

8taa PORTA, X

puly

pulx

pulb

pula

rts

* PRCNT -- Convert the six blrte counter value to a two byte value (degrees)

* and store at theta:th@ta÷l

PRCNT psha

pshh

pshx

pshy

idx #REGBAS

Idaabytel

Jar TOASCZI

pshb

staa tdata

Jsr OUTSCI

pula

staa tdata

Jsr OUTSCI

ldaa byte0

Jsr TOASCII

pshb

etaa tdata

Jsr OUTSCI

pula

staa tdata

Jar OUTSCI

PRCNTX puly

pulx

pulb

pula

rts

* PRTHETA -- Convert the six byte counter value to a two byte value_ (degrees)

* and store at theta.thata+l

PRTHXTA psha

pshb

pebx

pshy

Idx #REGBAS

J sr DIV_ DEG

idaa theta

101

J mr TOASCII

pehb

staa tdata

Jar OUTSCI

pula

staa tdata

J sr OUTSCI

idaa theta+l

sr TOASCII

pshb

Btaa tdata

J sr OUTSCI

pula

sta& tdata

J =r 0UTSCI

PRTHETX puly

pulx

pulb

pula

rim

* PRMODE -- Print mode and modeflag

PRMODE pmha

pshb

pahx

pshy

Idaa mode

mtaa tdata

J sr OUTSCI

idaa mode flag

mtaa tdata

J mr OUTSCI

puly
pulx

pu ib

pula

rts

* PREST -- Print estimated theta

PREST psha

pshb

pshx

pshy

idaa theta_e

Jmr TOASCII

pshb

staa tdata

Jsr OUTSCI

pula

mtaa tdata

jsr 0UTSCI

idaa theta_e+l

Jsr TOASCII

pshb

staa tdata

_er OUTSCI

pula

staa tdata

102

Jsr OUTSCI

puly

pulx

pulb

pula

rts

* 8-bit binary in A -> 2 ascii digits in A:B

TOASCIZ tab

Ears

Ears

Eo_a

EoEa

ands #$0F

adds #$30

c=_a #$39

ble TASCI

adds #7

TASCl andb #$0F

addb #$30

cmpb #$3S

ble TABCX

addb #7

TASCX rts

* WRITE A SPACE TO THZ SCI

WRSPACE psha

pshb

idaa #$20

staa *data

J sr OUTSCI

pulb

pula

rts

* STEPIT -- Calculate and send motor command.

*******st*

STEPIT NOP

* Save old accttmulator values

psha

pshb

psbx

pshy

* Reset steps
lad #$0000

std stops

* Calculate new estimate for *hera using thata_a and steps (number of

* steps since last update.

STEPITI nap

Idd stops

cpd #$0000

blt no*back

bra netfwd

no*back idd #$0000

8uJ_t stops

Jsr stp2deg
subd the*as

std the*as

ida #$oo0o

subd the*as

8td theta_e

103

netfwd

_ra n6wlst

ld_1 stops

Jsr Jtp2deg

ad_ thetae

std thetae

bra newest

newest ldd #$0000

Jtd JtepJ

* Determine mode of operation

_sr RDCNTR

Jmr DIV2DEG

l_e mode

c_a #'o'

beq CONTI

idd theta

subd theta_e

std cnterr

c_d #$oooo

bge MODECXK

I_ #$0000

subd cnterr

MODECHKopd MAXERR

_t OPEN3

bre CLOSED3

OPt3 idea #'o'

staa mode

idea #'3'

staa modeflag

bra CONTI

CLOSED3 Idea #'c'

staa mode

idaa #'0'

staa modeflag

bra CONTI

* Determine number and direction of steps

CONTI idea fstop

cmpa #'i'

bne CONT2

idea #'0'

staa fstop

idea rdata

cm_a #'S'

bne CONT2

Idea _de

_a #'o'

beq olstop

Idd there

bra storit

olstop idd theta_e

storit std theta_d

* Calculate delta there

CONT2 nop

Idea mode

beq CLOSED

idd thetad

8ubd theta_e

std delta_th

bra MOVEON

* read counter value into _/te2,Mytel,hTte0

* convert counter value to degrees (theta)

* if open loop mode gore CONTI

* cnterr = there - there e

* cnterr m abs(cnterr)

* if cnterr>MAXERR gore OPEN3

* Jump to CLOSED3

* if fstop = 'I'

* fstop = '0'

* if rdata = 'S'

. if mode=closed

. theta_d - theta

* else

* theta_d = theta_e

* endif

* endif

* endif

* if mode = closed then

* delta_th - theta d - there

* else

* delta th - theta_d - theta_e

* endlf

104

CLOSED Idd theta d

subd there

std delta th

* Use delta theta to determine motor direction

MOVEON pshb

psha

puly * Y - delta th

JGOREV

* Move

GOFWD

GOFWDI

GOFWD2

£wda

FOPENI

CONT3

* Move

GOREV

cpy # Sn, F_,
blt JGOREV

cpy #$0001

bgt GOFWD

imp STEPITX

imp Gory

motor forward if necessary

Idd theta

std theta_o

cpy #$00B4

ble GOFWDI

idy #$00B4

hop

pshy

pule

pulb

idaa #$0A

mul

idx #$09

idiv

pshx

puly

idea #'I'

c_pa fstop

bne fwda

_mp STEPITI

idd steps

addd #S01

std steps

Jsr MFWDI

Jsr SLODOWN

dey

cpy #$0000

bne GOFWD2

Idea mode

c_a #'o e

beq CONT3

idd theta_o

Jsr RDCNTR

jsr DIV2DEG

cpd there

beq FOPENI

imp STEPITI

* if delta th _ -i GOREV

* if delta th > 1 GOFWD

* branch to STEPITX (Good enoughl}

* B - LSB of Y (MSB _ $00)

* A - $0A (I0)

* D - B*$0A

* X = $09 (9)
* X m LSB*I0/9

* Y = X (steps)

* Jump to STEPITI

105

* Y = D (Y = -delta_th)

*D=0

* D = D - delta_th

* Take one step forward

* Pause between steps

* Y =Y- 1

* If Y _> 0 Jump to GOFWD2

* if open loop mode goto CONT3

* read counter value into byte2,bytel,byte0

* convert counter value to degreem (theta)

Idea #'o'

staa mode

idea #'I'

staamodeflag

_mp STEPIT1

motor backward if necessary

ic_l there

std theta_o

idd %$0000

subd delta th

pshb

psha

puly

cpy #$OOB_

GOREVI

GOREV2

ble GOREVl

Idy #$00B4

nop

pshy

pule

pulb

Idaa #$0A

mul

#$09Idx

idiv

psbx

puly

nop

idea #'I'

cmpa fstop

bno reva

_mp STEPITI

reva idd stepm

sulxt #$01

std steps

J sr MREVl

_sr SLODOWN

dey

cpy #$0000

bne GOREV2

idea mode

cmpa #'o'

beq CONT4

Idd theta_o

j sr RDCNTR

J sr DIV2 DEG

cpd theta

beq ROPENI

* B = LSB of Y (MSB = $00)

* A = $0X (10)

* D = B*$0A

* X = $09 (9)

* X = LSB*I0/9

* Y = X (steps)

* Take one step backward

* Pause between stops

* y m Y - 1

* If Y <> 0 Jump to GOREV2

* if open loop mode goto CONT4

* reed counter value into by_e2,blrtel,byteO

* convert counter value to degrees (theta)

imp STEPITI * Jump to STEPITI

ROPENI Idaa # ' o '

staa mode

Idea #'i'

staa model lag

CONT4 imp STEPITI * jump to STEPITI

• * Recall old accumulator values

STEPITX puly

pulx

pulb

pula

rts

* Issue command for one step backward

MREVl psha

pshb

pshx

pshy

idx #REGBAS

Idab PORTA, X

andb #9&ll100111

stab PORTA, X

orab #_00001000

stab PORTA, X

puly

pulx

pulb

pule

rts

* Issue command for one step forward

MFWDI psha

pshb

106

psbx

pmhy

idx #REGBAS

idab PORTA, Z

orab r400010000

andb #_11110111

stab PORTA, X

orab #_00001000

stab PORTA, X

puly

pulx

pulb

pula

rts

* HEXBIN(a} - Convert the ASCII character in a

* to binary and shift into shftreg. Returns value

* in TMPI incremented if a is not hex.

HEXBIN PSHA

PSHB

PSHX

pshy

jSR UPCASE

CMPA #'0'

BLT HEXNOT

CMPA #'9'

BLE HEX_B

CMPA #'A'

BLT HEXNOT

CMPA #'F'

BGT HEXNOT

ADDA #$9

XXX_B A_OA #$0r
LDX #SHFTREG

LDAB #4

ASL I,X

ROL 0, X

DECB

BGT HEXSHFT

ORAA I,X

STAA I,X

BRA HT_XRTS

HEXNOT INC TMPI

HZXRTS puly

PULX

PULB

PULA

RTS

convert to upper case

Jump if a < $30

jump if 0-9

Jun_ if $39> a <$41

Jun_ if a > $46

convert SA-$F

convert to binary

2 byte shift through

carry bit

shift 4 times

indicate not hex

* _E(a) - If the contents of A is alpha,

* returns a converted to uppercase.

UPCASE CMPA #'a'

BLT UPCASEI Jump if < a

CMPA #'z'

BGT UPCASEI jump if > z

SUBA #$20 convert

UPCASEI RTS

* DIV2DEG -- Converts Count (in divisions) to theta (in degrees)

DIV2DEG psha

pshb

pshx

pshy * Push Y onto stack

107

Idaa TMPI

psha

Idaa #$00
staa TMPI

ldy #$oooo
ldd _el
=;xt #$oooo
bga NOCSZ_3
lad #$0000
su.Ixl, h_rtal

psha

idaa #I

staa TMPI

pula

NOCHNG nop

* Determine how many times D is

_1 _ #$OLOO
ble CITE2

mu1_ #$0100

iny

bra CNTI

#$2D

#$0040

CNT2 idaa

mul

Idx

idiv

pmhx

pula

pulb

std

pshy

pula

pulb

idaa

mul

adad

std

ldaa

c_pa

bne

lad

subd

std

NOCHNG2 no;)

pula

staa

puly

pulx

pulb

pula

rts

that&

#$B4

*hera

*hera

TMPI

#1
__HNG2

#$oooo
*hera

theta

TMPI

* TMPI - 0

*Y- 0

* D • COUNT (in divisions) (512 div/rav)

* If hlrte >- 0, jump to NOCHNG

* D • -bytel:blrte0

* TMPI - 1

divls_le by $100. $i00 div - $B4 deg.

* Jump to CNT2 if D <- $0100

* D - D - $100

*Y:Y+I

* J_u.p always to CNTI

* A m $2D (45)

* D = A * B (B is LSB of COUNT, MSB m $00)

* IX • $40 (64)
* IX m D/IX

* Push X onto Stack

* Pull A off mtack (A = MSB of D)

* Pull B o£f stack (B = LSB of D)

* *hats • IX (second tam of the*a)

* Push Y onto stack

* Pull A off stack (A - MSB of IY)

* Pull B off stack (B - LSB of IY)

* A • $B4 (180)

*D=A*B

* D = D +theta

* *hats = D

* Look at TMPI

* If TMPI is not equal to i, Jump to NOCHNG2

*theta = -*hats

* Pull Y off mtack

* Pull X off mtack

* Pull B off stack

* Pull A off stack

s2dl Idd #$0000

Idy #9

mulit a_d imp16

day

bne _lit

mtd imp16

108

* Push X onto stack

* Push Y onto stack

mtd tmpl6

stp2deg pshx

pmhy

***********w*eew****Q

* stp2deg -- Converts steps in D (400/ray) to degrees (360/rev) in D.

idx #10

idly

six tu_16

pehx

pule

pulb

std _mpl6

s2dz puly

pulx

rts

* SCI In*erupt Service Routine

* If first byte is fa or ADDRESS,

* d_flag is set to $31 and

* ranaining

SCI_ISR Idx #REGBAS

idea SCSR,X

idea SCDR,X

cmpa #$fa

boq imr2

c_pa ADDRESS

beq isr2

imp isr4

bytes are stored in rdata

ier2

ier3

ldy #rdata

brclr SCSR,X #_00100000 isr3

idea SCDR, X

staa 0,Y

iny

cpy #COMSIZE+#RDATA

blo isr3

* if rdata:rdata÷3 = 'S eW*' then

* fstop = 'I'

* rti

* end

noetop

idaa rdata

cmpa #'S'

bne nostop

Idaa #'i'

staa fstop

imp isr4

nop

* Pull Y off stack

* Pull X off mtack

* necemsery to reset flag

* read first byte

* if by*el .oq. Sfe then gore isr2

* if by*el .he. ADDRESS gore isr4

* stop here until byte is received

* reed & save byte

* increment pointer

* compare pointer to max pointer

* if all bytes not read gore ier3

* A _ rdata

* fstop = 'i' (valid data)

* rti

* if all rdata byte 0-9 or A-F then

* set flag

* else

* rdata = 0000

* end

* return

Idea #$00

staa TMPI

Idy #rdata

Idea 0,Y

Jsr HEXBIN

Idaa TMPI

bno isr4

Idea I,Y

Jsr HEXBIN

idea SHFTREG+I

staa theta_d

Idea 2,Y

Jsr HEXBIN

Idea TMPI

bne isr4

109

LINI

LIN_

is_4 nop

beet

zs Isr rti

Idea 3,Y

Jsr HEXBIN

idea SIIFTREG+I

staa there d+l

idea #$31

staa dxflag

Idd theta_d

cpd limmln

bge LIMI

idd lim_m/n

std theta_d

cpd liramax
hle LIM2

idd limmax

std theta_d

hop

SCCR2,X #_00000010

* set good data received flag

* if theta_d < lira mln then

* theta_d = lim_min

* endif

* if thete_d • llm_max then

* theta_d = lim_max

* endif

* RWU -- 1 (MCU _n wakeup mode)

* return from interupt

* STARTUP -- MAIN

STARTUP ids #STACKTOP

Jsr INIT

Idea #CR

stae tdata

_sr OUTSCI

LOOP0 jsr RDCNTR

Idea #$f0

staa tdata

Jsr 0UTSCI

ida& #$f0

staa tdata

Jsr OUTSCI

Idy #$FF

pausel dey

bne peusel

idea mode

c_qpa #'c'

beq CLLOOP

Jsr PREST

hra GOLOOP

CLLOOP Jsr PRTHETA

GOLOOP Jsr PRMODE

* Write co_®_and to SCZ.

* Check for received c,_,_-d

LOOP1 Ida& dxflag

cmpa #$31

hne LOOP1

Jsr STEPIT

idea #$00

staa dxflag

ZLOOP0 bra LOOP0

* Does not affect master. Looks better on mcreen.

* master address

* master address

* pause to allow master to select port

110

E. Using Pcbugl I to Program the Motorola 68HC11E9

111

POL_ Or,i, ,',',.,
, [

•s(icl tF¢ U/LI

SSgHCI I_rBU Cusmm_

Both me standard _d student EV_Us coRi(_ _ _i MC68HCI IEgFNi MCU installed 0a me

board and the BUFFALO monitor program _t0t_ in _e MCU-internal ROM. But _e d_d_t
EV'BU kit also contains a blank MC68HC711E9 MC'U and PCbug11, a PC-b_ed tn0alt0f

program. A complete de_k'rtption of the PCbugll is provided in the PCbusli U,_-'_ IV!d.ddal,
M68PCBUGll/D1. V_dle a detailed descrlptiotl of the BUFFALO monitei" iS tv_'lable h_ th_
M68HC11EVBU Universal Evaluation Bo_l UsW_ Manual, M68HC11EVBU/AD 1.

You may install the blank MC68HC711E9 MCU in the EVBU Socket at loe_io, U3, Aft_

installing the 71IE9 MCU on the EVBU it n_ty be programmed u_riflg PCSu_il. Either
BUFFALO or a user-developed program canbe _ the 71IE9 MCU-intei_iA1HPROM. $tC_
by-step F_,PROM programming instructions are provided in this letter of refer to page 4-12 oftS_
PCbugl 1 user's manual for additional information.

WHAT IS PCbug117

PCbugll is a software package for easy access to _d simple expc, ri_etl_tld_ _vith M68HCIi

microcontroller unit (MCU) devices. PCbugl 1 lets you program dny member of the M6$HC11
MCU family and examine the behavior of intefftal pefiphc_ls trader _C'i_e coaditioa_. Irl
addition, you may run your own program_ oa the MC'U; bre_oi.qt i_itil_ aitd tr_ce
__ ate avaitable.

To com_ the EV_U to usePCbugi I:

1. i_inove the jumper fror_ J'7, add p|dc_ it _0._ J3. Movin_ the j_ to J3 _unds

• e MODB pin and at reset places the HCi 1 in BOOTSTRAP mode.

NOTE

Referto Figure2-I of theM68HCI IEVBU Unive_ai Evaluation

Board User'sManual, M68HCIIEVBU/ADI, forjumpe_ header
and connec_ locations.

Q Connect the EvBU to your PC serial poff via a us_-_uppHed 25-pin cable. The PC

serial port can be eitherCOM1 or COM2. The cable must be a Hayes-compatible
modem cable and is available at most elect_ntc supply stores.

3. Apply pow_ to the EVBU.

UNIVERSAL EVALUATION BOARD CUSTOMER LETTER
S69HC11EVBU/L.1

MOTOROLA
1-1

1"

S.

_e

I'osuml_Ct_gltfromthec_d ime:

PCbttgli -E port=l<CR> Wh._- [/0 isCOM2, useport=2.

isthesymbol for carriagereturn.

The registers should be displayed on the _creen, and a >> prompt in the window at the,
bottom of the screen. : :

With PCbugll version 3.24A, enter off the PC keyboard:

CONTROL BASE HEX<CR>

This defines the keyboard input default _ hexadecimal. By doing this, you do trot _e

to add the $ to inputs.

This should get you startedwith PCbugl I.BecaUSe the TALKER code tlsediflthisey,afli[_ie

resides in RAM. you are limited to the amount of free space that you carl use f0t V_-I_i_. It Rti_

be useful to put the T_R into EPROM (it takes _tmt 200 bytes), and i_tVe tt_M O_y0ttt tSet

space free. For more detail ott the TALKER refer to i_af,agraph 4.4 of the PCbtl_| i tfl/Uttull.

_.,_ERSAL EVALUATION BOARD CUSTOMER LETW=R
SSSHC11EVBU/L1

PROGI_AMMiNG EEPROM

Fries tO b_ programmed into the 711E9 MCU-int_i'fial EEPROM must be in S-record format. The

S-n_[f_ is explained in Appendix A of the M68HC11EVBU Universal Evaluation BozLrd
User's _mfl, M68HC11EVBU/AD I.

The S-t_oi-d to be downloaded k,ito the 711E9 MCU-int_al

EEPROM must be ORGed at _ $B600:

Entu on the PC keyboard:

EEPROM $8600 $B7FF<CR>

MS $10_$ 00<CR>

LOADS file_lie_CR>

VERF filename<CR>

Thi_ lets PCbug11 know that th_$e add_i_e_
EEPROM and that it should use a F_PROM

algorithm.

le_ you ptoge_tn th_ EFA'ROM _-_io_of the _]i11_9
MCU.

10M._ _ S-reco_ format f'de iflto the EEPROM

_e_tiofl of the 711E9 MCU.

Thi_ verifies that the S-rec0f-d format file was

successfully loaded into EEPROM.

UNIVERSAL EVALUATION BOARD CUSTOMER LETTER
S68HC11EVBU/L1

:t ",:- _ . ,: _- :_¸¸

PROGRAMMING EPROM

Fries to be programmed into the 711E9 MCU-intettlifl EPROM must be in S-recmd format. Tiie S-
record format is explnine,_ :n Appendix A of the M68HCl 1EVBU Universal Evnlunfimi Boa/-d
User's Manual, M68HCI IEVBU/ADI.

NOT_

The S-record to be dowtlloaded h/to the 711E9 MCU-intem_

EPROM must be ORGed at addre_ SIX}00.

To program the MCU-intemal EPROM enter ¢m the PC keyboard:

EPROM $DOOO SFFFF<CR> This let_ PCbugll lmow th_It thee _ktte_et

EPROM and that it Should use i Ei_OM _I_

Apply +12Vd¢: to the _ pin T_ _'tS_ the ML'_U-itst_l t_PROM, ,l_Vde
t be@pHedto _e _pm Mthe _i Itl9 MC-_,
Attach _[-_12Vdc power _pply tO the MC'iJ [/0 p0tt

COilfl_fit_P4, pifi-i8. A 10012 fe_It_ tnust be
i_tiklJ_ in series with the + 12Vde l_vet suppiy n_[

CAIJTION

Do not apply a +12Vdc pm_/t| voltage power f,otttce when

the main VDD (+5Vdc) power is off; doing so will damage tile
EVBU intrgrated circuitS. Alwly_ tttm or1 the main VDD (+5Vdc)

power befo_ the +12Vdc pt__[vol_ge is apl_lied.

LOADS fllenamt,<CR>

VERF filettame<CR>

Thi_ load_an S-i'ecord format Fde intothe EPROM

secti_of the 711E9 MCU.

This verifies that the S-record format file was

succes.q3flly loaded into EPROM.

_ERSAL EVALUATION BOARD CUSTOMER LJET'IIER

[]_" $68HCli EVBU/t.I

PCbugll HINTS

• The E.PROM and EEPROM comm_d§ nitt_t be entered befot¢ you _ pmgrtt_

EPROM and EEPROM. This sets-up PCbugl i F.PROM and EEPROM pfo_[
routines.

* Don't forget to clear the BPROT register before trying m modify EEPROM 1_

It

6

Initially, you _hould work on your roufitl_ in EEPROM. Since _ e_ _ thi_81t
EEPROMlike RAM,it is best to _ themout thee beforecommitIingto EPROM.'v_he_
tracing the EEPROM Use the memory set fMS) command to modify the block [_tect
register m O0 (MS $1035 00) and the EEPROM command (EEPROM $B6(}0 SBTF_,

Be sure to set yotrr stick pointer where it will not interfere with _e PC_ugil _k

pointer."i'heTALKER prognm startsat$0000inP.AM,withthefirstfr_ b_e at
$0100. "i_hePCbegl I si_ckpointeris_etto $OIFF. Set your stackpointe_-atle_i_20

byte_($01EB) lower than this.

, ff a COM tdi_lt _ whim _t_-hig _ on the _d liite:

. Check the cable between the EVBU and the PC. If the cotlfleefi0i_ i_ 0k_y, try
issuing the control timeout command (CONTROL TIIgIEOIfI' 10000). _ gives
the MCU mote time to respotid (rieeded when PCbugl 1 is _i_ off :I fast 1_-').

= Make surethe transmitpitsfor the PC connects to the receive pifl of the MCU. The
transmit pin will have approximately9 to 12 volts on it. The receive pin gill only
have a few millivolts if any.

3. Remove the MCU from the _ocket _d check the pins for danulge, if the pins are
shorted, straighten the pins and carefully reinsert the MCU.

* if y6u are using an XT-PC and the disphiy locks-up, try issuing a MODE CO80 at the

DOS prompt

MOTOROLA
sm_c_ _EVBU/L_ I / 6 _-S

